Time-Dependent System Reliability for Components in Parallel: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<noinclude>{{Banner BlockSim Examples}}
<noinclude>{{Banner BlockSim Examples}}
''This example appears in the [[Time-Dependent_System_Reliability_(Analytical)#Examples|System Analysis Reference book]]''.
''This example appears in the [https://help.reliasoft.com/reference/system_analysis System analysis reference]''.




Line 84: Line 84:
[[Image:BS5.7.png|center|650px|<div align="center"> ''pdf'' plot for the system.</div>|link=]]
[[Image:BS5.7.png|center|650px|<div align="center"> ''pdf'' plot for the system.</div>|link=]]


The system's failure rate can be obtained by dividing the system's ''pdf'', given in equation above, by the system's reliability function given in <math>{{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\!</math>, or:
The system's failure rate can be obtained by dividing the system's ''pdf'', given in equation above, by the system's reliability function given in
::<math>\begin{align}
{{R}_{s}}(t)= & 2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\end{align}\,\!</math>, or:


::<math>\begin{align}
::<math>\begin{align}
Line 97: Line 99:
The <math>MTTF\,\!</math> of the system is obtained by integrating the system's reliability function given by <math>{{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\!</math> from time zero to infinity, as given by <math>MTTF=\int_{0}^{\infty }{{R}_{s}}\left( t \right)dt  \ \,\!</math>.  Using BlockSim's Analytical QCP, an <math>MTTF\,\!</math> of 1007.8 hours is calculated, as shown in the figure below.
The <math>MTTF\,\!</math> of the system is obtained by integrating the system's reliability function given by <math>{{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\!</math> from time zero to infinity, as given by <math>MTTF=\int_{0}^{\infty }{{R}_{s}}\left( t \right)dt  \ \,\!</math>.  Using BlockSim's Analytical QCP, an <math>MTTF\,\!</math> of 1007.8 hours is calculated, as shown in the figure below.


[[Image:Fig 5.9.PNG|center|450px|<div align="center"> MTTF of the system. </div>]]
[[Image:Fig 5.9.PNG|center|450px|<div align="center"> MTTF of the system. </div>|link=]]




The warranty time can be obtained by solving <math>{{R}_{s}}(t)\,\!</math> with respect to time for a system reliability <math>{{R}_{s}}=0.9\,\!</math>.  Using the Analytical QCP and selecting the '''Reliable Life''' option, a time of 372.72 hours is obtained, as shown in the following figure.
The warranty time can be obtained by solving <math>{{R}_{s}}(t)\,\!</math> with respect to time for a system reliability <math>{{R}_{s}}=0.9\,\!</math>.  Using the Analytical QCP and selecting the '''Reliable Life''' option, a time of 372.72 hours is obtained, as shown in the following figure.


[[Image:Fig 5.10.PNG|center|450px|<div align="center"> Time at which ''R''=0.9 or 90% for the system.</div>]]
[[Image:Fig 5.10.PNG|center|450px|<div align="center"> Time at which ''R''=0.9 or 90% for the system.</div>|link=]]




Lastly, the conditional reliability can be obtained using <math>R(T,t)=\frac{R(T+t)}{R(T)}\,\!</math> and <math>{{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\!</math>, or:  
Lastly, the conditional reliability can be obtained using <math>R(t|T)=\frac{R(T+t)}{R(T)}\,\!</math> and <math>{{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\!</math>, or:  


::<math>\begin{align}
::<math>\begin{align}
R(200,200)= & \frac{R(400)}{R(200)} \\  
R(200|200)= & \frac{R(400)}{R(200)} \\  
= & \frac{0.883825}{0.975321} \\  
= & \frac{0.883825}{0.975321} \\  
= & 0.906189   
= & 0.906189   
Line 115: Line 117:
This can be calculated using BlockSim's Analytical QCP, as shown below.
This can be calculated using BlockSim's Analytical QCP, as shown below.


[[Image:Fig 5.11.PNG|center|450px|<div align="center">  Conditional reliability calculation for the system.</div>]]
[[Image:Fig 5.11.PNG|center|450px|<div align="center">  Conditional reliability calculation for the system.</div>|link=]]

Latest revision as of 20:57, 18 September 2023

BlockSim Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at BlockSim examples and BlockSim reference examples.




This example appears in the System analysis reference.


Time-Dependent System Reliability for Components in Parallel

Consider the system shown next.

Complex bridge system in Example 2.

Components [math]\displaystyle{ A\,\! }[/math] through [math]\displaystyle{ E\,\! }[/math] are Weibull distributed with [math]\displaystyle{ \beta =1.2\,\! }[/math] and [math]\displaystyle{ \eta =1230\,\! }[/math] hours. The starting and ending blocks cannot fail.

Determine the following:

  • The reliability equation for the system and its corresponding plot.
  • The system's pdf and its corresponding plot.
  • The system's failure rate equation and the corresponding plot.
  • The MTTF.
  • The warranty time for a 90% reliability.
  • The reliability for a 200-hour mission, if it is known that the system has already successfully operated for 200 hours.


Solution

The first step is to obtain the reliability function for the system. The methods described in the RBDs and Analytical System Reliability chapter can be employed, such as the event space or path-tracing methods. Using BlockSim, the following reliability equation is obtained:

[math]\displaystyle{ \begin{align} {{R}_{s}}(t)= & ({{R}_{Start}}\cdot {{R}_{End}}(2{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}} \\ & -{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}-{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{E}} \\ & -{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{B}}\cdot {{R}_{E}}-{{R}_{A}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}} \\ & -{{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}}+{{R}_{A}}\cdot {{R}_{C}}\cdot {{R}_{E}} \\ & +{{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}+{{R}_{A}}\cdot {{R}_{D}}+{{R}_{B}}\cdot {{R}_{E}})) \end{align}\,\! }[/math]


Note that since the starting and ending blocks cannot fail, [math]\displaystyle{ {{R}_{Start}}=1\,\! }[/math] and [math]\displaystyle{ {{R}_{End}}=1,\,\! }[/math] the equation above can be reduced to:

[math]\displaystyle{ \begin{align} {{R}_{s}}(t)= & 2\cdot {{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}} \\ & -{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}-{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{E}} \\ & -{{R}_{A}}\cdot {{R}_{D}}\cdot {{R}_{B}}\cdot {{R}_{E}}-{{R}_{A}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}} \\ & -{{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}\cdot {{R}_{E}}+{{R}_{A}}\cdot {{R}_{C}}\cdot {{R}_{E}} \\ & +{{R}_{D}}\cdot {{R}_{C}}\cdot {{R}_{B}}+{{R}_{A}}\cdot {{R}_{D}}+{{R}_{B}}\cdot {{R}_{E}} \end{align}\,\! }[/math]


where [math]\displaystyle{ {{R}_{A}}\,\! }[/math] is the reliability equation for Component A, or:

[math]\displaystyle{ {{R}_{A}}(t)={{e}^{-{{\left( \tfrac{t}{{{\eta }_{A}}} \right)}^{{{\beta }_{A}}}}}}\,\! }[/math]


[math]\displaystyle{ {{R}_{B}}\,\! }[/math] is the reliability equation for Component [math]\displaystyle{ B\,\! }[/math], etc.


Since the components in this example are identical, the system reliability equation can be further reduced to:

[math]\displaystyle{ \begin{align} {{R}_{s}}(t)=2R{{(t)}^{2}}+2R{{(t)}^{3}}-5R{{(t)}^{4}}+2R{{(t)}^{5}} \end{align}\,\! }[/math]

Or, in terms of the failure distribution:

[math]\displaystyle{ {{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\! }[/math]

The corresponding plot is given in the following figure.

Reliability plot for the system.

In order to obtain the system's pdf, the derivative of the reliability equation given above is taken with respect to time, resulting in:

[math]\displaystyle{ \begin{align} {{f}_{s}}(t)= & 4\cdot \frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+6\cdot \frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}} \\ & -20\cdot \frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+10\cdot \frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}} \end{align}\,\! }[/math]

The pdf can now be plotted for different time values, [math]\displaystyle{ t\,\! }[/math], as shown in the following figure.

pdf plot for the system.

The system's failure rate can be obtained by dividing the system's pdf, given in equation above, by the system's reliability function given in

[math]\displaystyle{ \begin{align} {{R}_{s}}(t)= & 2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\end{align}\,\! }[/math], or:
[math]\displaystyle{ \begin{align} {{\lambda }_{s}}(t)= & \frac{4\cdot \tfrac{\beta }{\eta }{{\left( \tfrac{t}{\eta } \right)}^{\beta -1}}{{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+6\cdot \tfrac{\beta }{\eta }{{\left( \tfrac{t}{\eta } \right)}^{\beta -1}}{{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}}{2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}} \\ & +\frac{-20\cdot \tfrac{\beta }{\eta }{{\left( \tfrac{t}{\eta } \right)}^{\beta -1}}{{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+10\cdot \tfrac{\beta }{\eta }{{\left( \tfrac{t}{\eta } \right)}^{\beta -1}}{{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}}{2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}} \end{align}\,\! }[/math]

The corresponding plot is given below.

Failure rate for the system.

The [math]\displaystyle{ MTTF\,\! }[/math] of the system is obtained by integrating the system's reliability function given by [math]\displaystyle{ {{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\! }[/math] from time zero to infinity, as given by [math]\displaystyle{ MTTF=\int_{0}^{\infty }{{R}_{s}}\left( t \right)dt \ \,\! }[/math]. Using BlockSim's Analytical QCP, an [math]\displaystyle{ MTTF\,\! }[/math] of 1007.8 hours is calculated, as shown in the figure below.

MTTF of the system.


The warranty time can be obtained by solving [math]\displaystyle{ {{R}_{s}}(t)\,\! }[/math] with respect to time for a system reliability [math]\displaystyle{ {{R}_{s}}=0.9\,\! }[/math]. Using the Analytical QCP and selecting the Reliable Life option, a time of 372.72 hours is obtained, as shown in the following figure.

Time at which R=0.9 or 90% for the system.


Lastly, the conditional reliability can be obtained using [math]\displaystyle{ R(t|T)=\frac{R(T+t)}{R(T)}\,\! }[/math] and [math]\displaystyle{ {{R}_{s}}(t)=2\cdot {{e}^{-2{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-3{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}-5\cdot {{e}^{-4{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}+2\cdot {{e}^{-5{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}\,\! }[/math], or:

[math]\displaystyle{ \begin{align} R(200|200)= & \frac{R(400)}{R(200)} \\ = & \frac{0.883825}{0.975321} \\ = & 0.906189 \end{align}\,\! }[/math]

This can be calculated using BlockSim's Analytical QCP, as shown below.

Conditional reliability calculation for the system.