Duane Linear Regression Examples: Difference between revisions
Kate Racaza (talk | contribs) No edit summary |
Lisa Hacker (talk | contribs) No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- EVERYTHING ON THIS PAGE, EXCEPT FOR THE DATA SET IN THE FIRST EXAMPLE, IS TRANSCLUDED IN PAGE: Duane Model Examples. IF YOU EDIT THE DATA SET IN EXAMPLE 1, YOU MUST ALSO EDIT THE DATA SET AND RESULTS ON THE FOLLOWING PAGES: Duane Graphical Method Example and Duane Confidence Bounds Example. --> | <!-- EVERYTHING ON THIS PAGE, EXCEPT FOR THE DATA SET IN THE FIRST EXAMPLE, IS TRANSCLUDED IN PAGE: Duane Model Examples. IF YOU EDIT THE DATA SET IN EXAMPLE 1, YOU MUST ALSO EDIT THE DATA SET AND RESULTS ON THE FOLLOWING PAGES: Duane Graphical Method Example and Duane Confidence Bounds Example. --> | ||
<noinclude>{{Banner RGA Examples}}{{Navigation box}} | <noinclude>{{Banner RGA Examples}}{{Navigation box}} | ||
''These examples appear in the [ | ''These examples appear in the [https://help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis Reliability growth reference]''. | ||
The following examples demonstrate how to estimate the parameters of the Duane model using a mathematical approach. | The following examples demonstrate how to estimate the parameters of the Duane model using a mathematical approach. | ||
== | ==Example 1== | ||
</noinclude> | </noinclude> | ||
<includeonly>==== | <includeonly>====Example 1==== | ||
Using the same data set from the graphical approach example, estimate the parameters of the MTBF model using least squares. | Using the same data set from the graphical approach example, estimate the parameters of the MTBF model using least squares. | ||
Line 33: | Line 33: | ||
Do the following: | Do the following: | ||
#Plot the cumulative MTBF growth curve. | |||
#Write the equation of this growth curve. | |||
#Write the equation of the instantaneous MTBF growth model. | |||
#Plot the instantaneous MTBF growth curve. | |||
</noinclude>'''Solution''' | </noinclude>'''Solution''' | ||
Line 51: | Line 48: | ||
\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}&= & 168.99 | \underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}&= & 168.99 | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Obtain the value of <math>\hat{\alpha}\,\!</math> from the least squares analysis, or: | Obtain the value of <math>\hat{\alpha}\,\!</math> from the least squares analysis, or: | ||
Line 83: | Line 79: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
<noinclude>== | <noinclude>==Example 2==</noinclude> | ||
<includeonly>==== | <includeonly>====Example 2====</includeonly> | ||
For the data given in columns 1 and 2 of the following table, estimate the Duane parameters using least squares. | For the data given in columns 1 and 2 of the following table, estimate the Duane parameters using least squares. | ||
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | {|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | ||
|+'''Failure | |+'''Failure Times Data''' | ||
|- | |- | ||
!(1)Failure Number | !(1)Failure Number | ||
Line 179: | Line 175: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
[[Image:rga4.6.png|center| | [[Image:rga4.6.png|center|450px]] | ||
<noinclude>== | <noinclude>==Example 3==</noinclude> | ||
<includeonly>==== | <includeonly>====Example 3====</includeonly> | ||
For the data given in the following table, estimate the Duane parameters using least squares. | For the data given in the following table, estimate the Duane parameters using least squares. | ||
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | {|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | ||
|+'''Multiple | |+'''Multiple Systems (Known Operating Times) Data}''' | ||
!Run Number | !Run Number | ||
!Failed Unit | !Failed Unit |
Latest revision as of 21:30, 18 September 2023
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.
These examples appear in the Reliability growth reference.
The following examples demonstrate how to estimate the parameters of the Duane model using a mathematical approach.
Example 1
A complex system's reliability growth is being monitored and the data set is given in the table below.
Point Number | Cumulative Test Time(hours) | Cumulative Failures | Cumulative MTBF(hours) | Instantaneous MTBF(hours) |
---|---|---|---|---|
1 | 200 | 2 | 100.0 | 100 |
2 | 400 | 3 | 133.0 | 200 |
3 | 600 | 4 | 150.0 | 200 |
4 | 3,000 | 11 | 273.0 | 342.8 |
Do the following:
- Plot the cumulative MTBF growth curve.
- Write the equation of this growth curve.
- Write the equation of the instantaneous MTBF growth model.
- Plot the instantaneous MTBF growth curve.
Solution
From the data table:
- [math]\displaystyle{ \begin{align} \underset{i=1}{\overset{n}{\mathop \sum }}\,\ln ({{T}_{i}})&= & 25.693 \\ \underset{i=1}{\overset{n}{\mathop \sum }}\,\ln ({{T}_{i}})\ln ({{m}_{ci}})&= & 130.66 \\ \underset{i=1}{\overset{n}{\mathop \sum }}\,\ln ({{m}_{ci}})&= & 20.116 \\ \underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}&= & 168.99 \end{align}\,\! }[/math]
Obtain the value of [math]\displaystyle{ \hat{\alpha}\,\! }[/math] from the least squares analysis, or:
- [math]\displaystyle{ \begin{align} \hat{\alpha }&=\frac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\ln ({{m}_{ci}})-\tfrac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})}{n}}{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}-\tfrac{{{\left( \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right)}^{2}}}{n}} \\ & = \frac{130.66-\tfrac{25.693\cdot 20.116}{4}}{168.99-\tfrac{{{25.693}^{2}}}{4}} \\ & = 0.3671 \end{align}\,\! }[/math]
Obtain the value [math]\displaystyle{ \hat{b}\,\! }[/math] from the least squares analysis, or:
- [math]\displaystyle{ \begin{align} \hat{b}&={{e}^{\tfrac{1}{n}\left[ \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})-\alpha \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right]}} \\ & = {{e}^{\tfrac{1}{4}(20.116-0.3671\cdot 25.693)}} \\ & = 14.456 \end{align}\,\! }[/math]
Therefore, the cumulative MTBF becomes:
- [math]\displaystyle{ \begin{align} \hat{m_{c}}&=bT^{\alpha } \\ &=14.456\cdot {{T}^{0.3671}} \\ \end{align}\,\! }[/math]
The equation for the instantaneous MTBF growth curve is:
- [math]\displaystyle{ \begin{align} {{\hat{m}}_{i}}&=\frac{1}{1-\alpha }{{{\hat{m}}}_{c}},:\ \ \alpha \not{=}1 \\ &=\frac{1}{1-0.3671}(14.456){{T}^{0.3671}} \\ \end{align}\,\! }[/math]
Example 2
For the data given in columns 1 and 2 of the following table, estimate the Duane parameters using least squares.
(1)Failure Number | (2)Failure Time(hours) | (3)[math]\displaystyle{ \ln{T_i}\,\! }[/math] | (4)[math]\displaystyle{ \ln{T_i}^2\,\! }[/math] | (5)[math]\displaystyle{ m_c\,\! }[/math] | (6)[math]\displaystyle{ \ln{m_c}\,\! }[/math] | (7)[math]\displaystyle{ \ln{m_c}\cdot\ln{T_i}\,\! }[/math] |
---|---|---|---|---|---|---|
1 | 9.2 | 2.219 | 4.925 | 9.200 | 2.219 | 4.925 |
2 | 25 | 3.219 | 10.361 | 12.500 | 2.526 | 8.130 |
3 | 61.5 | 4.119 | 16.966 | 20.500 | 3.020 | 12.441 |
4 | 260 | 5.561 | 30.921 | 65.000 | 4.174 | 23.212 |
5 | 300 | 5.704 | 32.533 | 60.000 | 4.094 | 23.353 |
6 | 710 | 6.565 | 43.103 | 118.333 | 4.774 | 31.339 |
7 | 916 | 6.820 | 46.513 | 130.857 | 4.874 | 33.241 |
8 | 1010 | 6.918 | 47.855 | 126.250 | 4.838 | 33.470 |
9 | 1220 | 7.107 | 50.504 | 135.556 | 4.909 | 34.889 |
10 | 2530 | 7.836 | 61.402 | 253.000 | 5.533 | 43.359 |
11 | 3350 | 8.117 | 65.881 | 304.545 | 5.719 | 46.418 |
12 | 4200 | 8.343 | 69.603 | 350.000 | 5.858 | 48.872 |
13 | 4410 | 8.392 | 70.419 | 339.231 | 5.827 | 48.895 |
14 | 4990 | 8.515 | 72.508 | 356.429 | 5.876 | 50.036 |
15 | 5570 | 8.625 | 74.393 | 371.333 | 5.917 | 51.036 |
16 | 8310 | 9.025 | 81.455 | 519.375 | 6.253 | 56.431 |
17 | 8530 | 9.051 | 81.927 | 501.765 | 6.218 | 56.282 |
18 | 9200 | 9.127 | 83.301 | 511.111 | 6.237 | 56.921 |
19 | 10500 | 9.259 | 85.731 | 552.632 | 6.315 | 58.469 |
20 | 12100 | 9.401 | 88.378 | 605.000 | 6.405 | 60.215 |
21 | 13400 | 9.503 | 90.307 | 638.095 | 6.458 | 61.375 |
22 | 14600 | 9.589 | 91.945 | 663.636 | 6.498 | 62.305 |
23 | 22000 | 9.999 | 99.976 | 956.522 | 6.863 | 68.625 |
Sum = | 173.013 | 1400.908 | 7600.870 | 121.406 | 974.242 |
Solution
To estimate the parameters using least squares, the values in columns 3, 4, 5, 6 and 7 are calculated. The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}\,\! }[/math], is calculated by dividing the failure time by the failure number. The value of [math]\displaystyle{ \hat{\alpha }\,\! }[/math] is:
- [math]\displaystyle{ \begin{align} \hat{\alpha }&=\frac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\ln ({{m}_{ci}})-\tfrac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})}{n}}{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}-\tfrac{{{\left( \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right)}^{2}}}{n}} \\ & = \frac{974.242-\tfrac{173.013\cdot 121.406}{23}}{1400.908-\tfrac{{{(173.013)}^{2}}}{23}} \\ & = 0.6133 \end{align}\,\! }[/math]
The estimator of [math]\displaystyle{ b\,\! }[/math] is estimated to be:
- [math]\displaystyle{ \begin{align} \hat{b}&={{e}^{\tfrac{1}{n}\left[ \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})-\alpha \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right]}} \\ & = {{e}^{\tfrac{1}{23}(121.406-0.6133\cdot 173.013)}} \\ & = 1.9453 \end{align}\,\! }[/math]
Therefore, the cumulative MTBF becomes:
- [math]\displaystyle{ \begin{align} \hat{m_{c}}&= bT^{\alpha } \\ & =1.9453\cdot {{T}^{0.613}} \\ \end{align}\,\! }[/math]
Using the equation for the instantaneous MTBF growth curve,
- [math]\displaystyle{ \begin{align} {{\hat{m}}_{i}}&=\frac{1}{1-\alpha }{{{\hat{m}}}_{c}},:\ \ \alpha \not{=}1 \\ & =\frac{1}{1-0.613}(1.945){{T}^{0.613}} \\ \end{align}\,\! }[/math]
Example 3
For the data given in the following table, estimate the Duane parameters using least squares.
Run Number | Failed Unit | Test Time 1 | Test Time 2 | Cumulative Time |
---|---|---|---|---|
1 | 1 | 0.2 | 2.0 | 2.2 |
2 | 2 | 1.7 | 2.9 | 4.6 |
3 | 2 | 4.5 | 5.2 | 9.7 |
4 | 2 | 5.8 | 9.1 | 14.9 |
5 | 2 | 17.3 | 9.2 | 26.5 |
6 | 2 | 29.3 | 24.1 | 53.4 |
7 | 1 | 36.5 | 61.1 | 97.6 |
8 | 2 | 46.3 | 69.6 | 115.9 |
9 | 1 | 63.6 | 78.1 | 141.7 |
10 | 2 | 64.4 | 85.4 | 149.8 |
11 | 1 | 74.3 | 93.6 | 167.9 |
12 | 1 | 106.6 | 103 | 209.6 |
13 | 2 | 195.2 | 117 | 312.2 |
14 | 2 | 235.1 | 134.3 | 369.4 |
15 | 1 | 248.7 | 150.2 | 398.9 |
16 | 2 | 256.8 | 164.6 | 421.4 |
17 | 2 | 261.1 | 174.3 | 435.4 |
18 | 2 | 299.4 | 193.2 | 492.6 |
19 | 1 | 305.3 | 234.2 | 539.5 |
20 | 1 | 326.9 | 257.3 | 584.2 |
21 | 1 | 339.2 | 290.2 | 629.4 |
22 | 1 | 366.1 | 293.1 | 659.2 |
23 | 2 | 466.4 | 316.4 | 782.8 |
24 | 1 | 504 | 373.2 | 877.2 |
25 | 1 | 510 | 375.1 | 885.1 |
26 | 2 | 543.2 | 386.1 | 929.3 |
27 | 2 | 635.4 | 453.3 | 1088.7 |
28 | 1 | 641.2 | 485.8 | 1127 |
29 | 2 | 755.8 | 573.6 | 1329.4 |
Solution
The solution to this example follows the same procedure as the previous example. Therefore, from the table shown above:
- [math]\displaystyle{ \begin{align} \underset{i=1}{\overset{29}{\mathop \sum }}\,\ln ({{T}_{i}})= & 154.151 \\ \underset{i=1}{\overset{29}{\mathop \sum }}\,\ln {{({{T}_{i}})}^{2}}= & 902.592 \\ \underset{i=1}{\overset{29}{\mathop \sum }}\,\ln ({{m}_{c}})= & 82.884 \\ \underset{i=1}{\overset{29}{\mathop \sum }}\,\ln ({{T}_{i}})\cdot \ln ({{m}_{c}})= & 483.154 \end{align}\,\! }[/math]
For least squares, the value of [math]\displaystyle{ \alpha \,\! }[/math] is:
- [math]\displaystyle{ \begin{align} \hat{\alpha }&=\frac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\ln ({{m}_{ci}})-\tfrac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}})\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})}{n}}{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,{{\left[ \ln ({{T}_{i}}) \right]}^{2}}-\tfrac{{{\left( \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right)}^{2}}}{n}} \\ & = \frac{483.154-\tfrac{154.151\cdot 82.884}{29}}{902.592-\tfrac{{{(154.151)}^{2}}}{29}} \\ & = 0.5115 \end{align}\,\! }[/math]
The value of the estimator [math]\displaystyle{ b\,\! }[/math] is:
- [math]\displaystyle{ \begin{align} \hat{b}&={{e}^{\tfrac{1}{n}\left[ \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{m}_{ci}})-\alpha \underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln ({{T}_{i}}) \right]}} \\ & = {{e}^{\tfrac{1}{29}(82.884-0.5115\cdot 154.151)}} \\ & = 1.1495 \end{align}\,\! }[/math]
Therefore, the cumulative MTBF is:
- [math]\displaystyle{ \begin{align} \hat{m_{c}}&=bT^{\alpha } & = 1.1495\cdot {{T}^{0.5115}} \end{align}\,\! }[/math]
Using the equation for the instantaneous MTBF growth,
- [math]\displaystyle{ \begin{align} {{\hat{m}}_{i}}&=\frac{1}{1-\alpha }{{{\hat{m}}}_{c}},:\ \ \alpha \not{=}1 \\ & =\frac{1}{1-0.5115}(1.1495){{T}^{0.5115}} \end{align}\,\! }[/math]