Least Squares/Rank Regression Equations: Difference between revisions
Lisa Hacker (talk | contribs) No edit summary |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Template: | {{Template:LDABOOK|Appendix A|Least Squares/Rank Regression Equations}} | ||
==Rank Regression on Y== | ==Rank Regression on Y== | ||
Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN), were obtained and plotted. Then, according to the least squares principle, which minimizes the vertical distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line y = | Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN), were obtained and plotted. Then, according to the least squares principle, which minimizes the vertical distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line y = a + bx such that: | ||
::<math>\sum_{i=1}^N (\hat{a}+\hat{b} x_i - y_i)^2=min(a,b)\sum_{i=1}^N (a+b x_i-y_i)^2 \,\!</math> | ::<math>\sum_{i=1}^N (\hat{a}+\hat{b} x_i - y_i)^2=min(a,b)\sum_{i=1}^N (a+b x_i-y_i)^2 \,\!</math> | ||
and where | and where <math>\hat{a}\,\!</math> and <math>\hat{b}\,\!</math> are the least squares estimates of ''a'' and ''b'', and ''N'' is the number of data points. | ||
To obtain <math>\hat{a}\,\!</math> and <math>\hat{b}\,\!</math>, let: | To obtain <math>\hat{a}\,\!</math> and <math>\hat{b}\,\!</math>, let: | ||
Line 22: | Line 22: | ||
Setting Eqns. (1) and (2) equal to zero yields: | Setting Eqns. (1) and (2) equal to zero yields: | ||
::<math>\sum_{i=1}^N (a+b x_i-y_i) | ::<math>\sum_{i=1}^N (a+b x_i-y_i)=\sum_{i=1}^N(\hat{y}_i-y_i)=-\sum_{i=1}^N(y_i-\hat{y}_i)=0 \,\!</math> | ||
:and: | :and: | ||
Line 30: | Line 30: | ||
Solving the equations simultaneously yields: | Solving the equations simultaneously yields: | ||
::<math>\hat{a}=\frac{\displaystyle \sum_{i=1}^N y_i}{N}-\hat{b}\frac{\displaystyle \sum_{i=1} | ::<math>\hat{a}=\frac{\displaystyle \sum_{i=1}^N y_i}{N}-\hat{b}\frac{\displaystyle \sum_{i=1}^N x_i}{N}=\bar{y}-\hat{b}\bar{x} \,\!</math> (3) | ||
:and: | :and: | ||
::<math>\hat{b}=\frac{\displaystyle \ | ::<math>\hat{b}=\frac{\displaystyle \sum_{i=1}^N x_i y_i-\frac{\displaystyle \sum_{i=1}^N x_i \sum_{i=1}^N y_i}{N}}{\displaystyle \sum_{i=1}^N x_i^2-\frac{\left(\displaystyle\sum_{i=1}^N x_i\right)^2}{N}}\,\!</math>(4) | ||
==Rank Regression on X== | ==Rank Regression on X== | ||
Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN) were obtained and plotted. Then, according to the least squares principle, which minimizes the horizontal distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line x = | Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN) were obtained and plotted. Then, according to the least squares principle, which minimizes the horizontal distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line x = a + by such that: | ||
::<math>\displaystyle\sum_{i=1}^N(\hat{a}+\hat{b}y_i-x_i)^2=min(a,b)\displaystyle\sum_{i=1}^N (a+by_i-x_i)^2 \,\!</math> | ::<math>\displaystyle\sum_{i=1}^N(\hat{a}+\hat{b}y_i-x_i)^2=min(a,b)\displaystyle\sum_{i=1}^N (a+by_i-x_i)^2 \,\!</math> | ||
Line 50: | Line 50: | ||
Differentiating F with respect to a and b yields: | Differentiating F with respect to a and b yields: | ||
::<math>\frac{\partial F}{\partial a}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i\,\!</math> (5) | ::<math>\frac{\partial F}{\partial a}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i)\,\!</math> (5) | ||
:and: | :and: | ||
Line 201: | Line 201: | ||
::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8}\,\!</math> | ::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8}\,\!</math> | ||
::<math>\widehat{ | ::<math>\widehat{b}=1.5484\,\!</math> | ||
:and: | :and: |
Latest revision as of 19:15, 15 September 2023
Rank Regression on Y
Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN), were obtained and plotted. Then, according to the least squares principle, which minimizes the vertical distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line y = a + bx such that:
- [math]\displaystyle{ \sum_{i=1}^N (\hat{a}+\hat{b} x_i - y_i)^2=min(a,b)\sum_{i=1}^N (a+b x_i-y_i)^2 \,\! }[/math]
and where [math]\displaystyle{ \hat{a}\,\! }[/math] and [math]\displaystyle{ \hat{b}\,\! }[/math] are the least squares estimates of a and b, and N is the number of data points.
To obtain [math]\displaystyle{ \hat{a}\,\! }[/math] and [math]\displaystyle{ \hat{b}\,\! }[/math], let:
- [math]\displaystyle{ F=\sum_{i=1}^N (a+bx_i-y_i)^2 \,\! }[/math]
Differentiating F with respect to a and b yields:
- [math]\displaystyle{ \frac{\partial F}{\partial a}=2\sum_{i=1}^N (a+b x_i-y_i) \,\! }[/math] (1)
- and:
- [math]\displaystyle{ \frac{\partial F}{\partial b}=2\sum_{i=1}^N (a+b x_i-y_i)x_i \,\! }[/math] (2)
Setting Eqns. (1) and (2) equal to zero yields:
- [math]\displaystyle{ \sum_{i=1}^N (a+b x_i-y_i)=\sum_{i=1}^N(\hat{y}_i-y_i)=-\sum_{i=1}^N(y_i-\hat{y}_i)=0 \,\! }[/math]
- and:
- [math]\displaystyle{ \sum_{i=1}^N (a+b x_i-y_i)x_i=\sum_{i=1}^N(\hat{y}_i-y_i)x_i=-\sum_{i=1}^N(y_i-\hat{y}_i)x_i =0\,\! }[/math]
Solving the equations simultaneously yields:
- [math]\displaystyle{ \hat{a}=\frac{\displaystyle \sum_{i=1}^N y_i}{N}-\hat{b}\frac{\displaystyle \sum_{i=1}^N x_i}{N}=\bar{y}-\hat{b}\bar{x} \,\! }[/math] (3)
- and:
- [math]\displaystyle{ \hat{b}=\frac{\displaystyle \sum_{i=1}^N x_i y_i-\frac{\displaystyle \sum_{i=1}^N x_i \sum_{i=1}^N y_i}{N}}{\displaystyle \sum_{i=1}^N x_i^2-\frac{\left(\displaystyle\sum_{i=1}^N x_i\right)^2}{N}}\,\! }[/math](4)
Rank Regression on X
Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN) were obtained and plotted. Then, according to the least squares principle, which minimizes the horizontal distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line x = a + by such that:
- [math]\displaystyle{ \displaystyle\sum_{i=1}^N(\hat{a}+\hat{b}y_i-x_i)^2=min(a,b)\displaystyle\sum_{i=1}^N (a+by_i-x_i)^2 \,\! }[/math]
Again, [math]\displaystyle{ \hat{a}\,\! }[/math] and [math]\displaystyle{ \hat{b}\,\! }[/math] are the least squares estimates of a and b, and N is the number of data points.
To obtain [math]\displaystyle{ \hat{a}\,\! }[/math] and [math]\displaystyle{ \hat{b}\,\! }[/math], let:
- [math]\displaystyle{ F=\displaystyle\sum_{i=1}^N(a+by_i-x_i)^2\,\! }[/math]
Differentiating F with respect to a and b yields:
- [math]\displaystyle{ \frac{\partial F}{\partial a}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i)\,\! }[/math] (5)
- and:
- [math]\displaystyle{ \frac{\partial F}{\partial b}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i)y_i\,\! }[/math](6)
Setting Eqns. (5) and (6) equal to zero yields:
- [math]\displaystyle{ \displaystyle\sum_{i=1}^N(a+by_i-x_i)=\displaystyle\sum_{i=1}^N(\widehat{x}_i-x_i)=-\displaystyle\sum_{i=1}^N(x_i-\widehat{x}_i)=0\,\! }[/math]
- and:
- [math]\displaystyle{ \displaystyle\sum_{i=1}^N(a+by_i-x_i)y_i=\displaystyle\sum_{i=1}^N(\widehat{x}_i-x_i)y_i=-\displaystyle\sum_{i=1}^N(x_i-\widehat{x}_i)y_i=0\,\! }[/math]
Solving the above equations simultaneously yields:
- [math]\displaystyle{ \widehat{a}=\frac{\displaystyle\sum_{i=1}^N x_i}{N}-\widehat{b}\frac{\displaystyle\sum_{i=1}^N y_i}{N}=\bar{x}-\widehat{b}\bar{y}\,\! }[/math](7)
- and:
- [math]\displaystyle{ \widehat{b}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\displaystyle\sum_{i=1}^N y_i^2-\frac{\left(\displaystyle\sum_{i=1}^N y_i\right)^2}{N}}\,\! }[/math](8)
Solving the equation of the line for y yields:
- [math]\displaystyle{ y=-\frac{\hat{a}}{\hat{b}}+\frac{1}{\hat{b}} x \,\! }[/math]
Example
Fit a least squares straight line using regression on X and regression on Y to the following data:
x | 1 | 2.5 | 4 | 6 | 8 | 9 | 11 | 15 |
---|---|---|---|---|---|---|---|---|
y | 1.5 | 2 | 4 | 4 | 5 | 7 | 8 | 10 |
The first step is to generate the following table:
[math]\displaystyle{ i\,\! }[/math] | [math]\displaystyle{ x_i\,\! }[/math] | [math]\displaystyle{ y_i\,\! }[/math] | [math]\displaystyle{ x_i^2\,\! }[/math] | [math]\displaystyle{ x_iy_i\,\! }[/math] | [math]\displaystyle{ y_i^2\,\! }[/math] |
---|---|---|---|---|---|
1 | 1 | 1.5 | 1 | 1.5 | 2.25 |
2 | 2.5 | 2 | 6.25 | 5 | 4 |
3 | 4 | 4 | 16 | 16 | 16 |
4 | 6 | 4 | 36 | 24 | 16 |
5 | 8 | 5 | 64 | 40 | 25 |
6 | 9 | 7 | 81 | 63 | 49 |
7 | 11 | 8 | 121 | 88 | 64 |
8 | 15 | 10 | 225 | 150 | 100 |
[math]\displaystyle{ \Sigma\,\! }[/math] | 56.5 | 41.5 | 550.25 | 387.5 | 276.25 |
From the table then, and for rank regression on Y (RRY):
- [math]\displaystyle{ \widehat{b}=\frac{387.5-(56.5)(41.5)/8}{550.25-(56.5)^2/8}\,\! }[/math]
- [math]\displaystyle{ \widehat{b}=0.6243\,\! }[/math]
- and:
- [math]\displaystyle{ \widehat{a}=\frac{41.5}{8}-0.6243\frac{56.5}{8}\,\! }[/math]
- [math]\displaystyle{ \widehat{a}=0.77836\,\! }[/math]
The least squares line is given by:
- [math]\displaystyle{ \begin{align} y=0.77836+0.6243x \end{align}\,\! }[/math]
The plotted line is shown in the next figure.
For rank regression on X (RRX) using the same table yields:
- [math]\displaystyle{ \widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8}\,\! }[/math]
- [math]\displaystyle{ \widehat{b}=1.5484\,\! }[/math]
- and:
- [math]\displaystyle{ \widehat{a}=\frac{56.5}{8}-1.5484\frac{41.5}{8}\,\! }[/math]
- [math]\displaystyle{ \widehat{a}=-0.97002\,\! }[/math]
The least squares line is given by:
- [math]\displaystyle{ y=-\frac{(-0.97002)}{1.5484}+\frac{1}{1.5484}\cdot x\,\! }[/math]
- [math]\displaystyle{ y=0.62645+0.64581\cdot x\,\! }[/math]
The plotted line is shown in the next figure.
Note that the regression on Y is not necessarily the same as the regression on X. The only time when the two regressions are the same (i.e., will yield the same equation for a line) is when the data lie perfectly on a line.
The correlation coefficient is given by:
- [math]\displaystyle{ \hat{\rho}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\sqrt{\left(\displaystyle\sum_{i=1}^N x_i^2-\frac{(\displaystyle\sum_{i=1}^N x_i)^2}{N}\right)\left(\displaystyle\sum_{i=1}^N y_i^2-\frac{(\displaystyle\sum_{i=1}^N y_i)^2}{N}\right)}}\,\! }[/math]
- [math]\displaystyle{ \widehat{\rho}=\frac{387.5-(56.5)(41.5)/8}{[(550.25-(56.5)^2/8)(276.25-(41.5)^2/8)]^{\frac{1}{2}}}\,\! }[/math]
- [math]\displaystyle{ \widehat{\rho}=0.98321\,\! }[/math]