Lognormal Distribution Examples: Difference between revisions
Lisa Hacker (talk | contribs) No edit summary |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
<noinclude>{{Banner Weibull Examples}}{{Navigation box}} | <noinclude>{{Banner Weibull Examples}}{{Navigation box}} | ||
''These examples also appear in the [ | ''These examples also appear in the [https://help.reliasoft.com/reference/life_data_analysis Life data analysis reference].'' | ||
</noinclude> | </noinclude> | ||
===Complete Data Example=== | ===Complete Data Example=== | ||
Line 37: | Line 37: | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {\hat{\sigma '}}= & 1.10 | & {\hat{\sigma '}}= & 1.10 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>X\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {{{\hat{\sigma' }}}}= & 1.24 | & {{{\hat{\sigma' }}}}= & 1.24 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>Y:\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {{{\hat{\sigma' }}}}= & 1.36 | & {{{\hat{\sigma' }}}}= & 1.36 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
===Complete Data RRX Example=== | ===Complete Data RRX Example=== | ||
From [[Appendix: | From Kececioglu [[Appendix:_Life_Data_Analysis_References|[20, p. 347]]]. 15 identical units were tested to failure and following is a table of their failure times: | ||
<center>'''Times-to-Failure Data'''</center> | <center>'''Times-to-Failure Data'''</center> | ||
Line 76: | Line 76: | ||
\text{14} & \text{410}\text{.6} \\ | \text{14} & \text{410}\text{.6} \\ | ||
\text{15} & \text{550}\text{.5} \\ | \text{15} & \text{550}\text{.5} \\ | ||
\end{matrix}</math></center> | \end{matrix}\,\!</math></center> | ||
'''Solution''' | '''Solution''' | ||
Line 85: | Line 85: | ||
{{\widehat{\mu }}^{\prime }}=5.22575 \\ | {{\widehat{\mu }}^{\prime }}=5.22575 \\ | ||
{{\widehat{\sigma' }}}=0.62048. \\ | {{\widehat{\sigma' }}}=0.62048. \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 93: | Line 93: | ||
{{\widehat{\mu }}^{\prime }}=5.2303 \\ | {{\widehat{\mu }}^{\prime }}=5.2303 \\ | ||
{{\widehat{\sigma'}}}=0.6283. \\ | {{\widehat{\sigma'}}}=0.6283. \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 110: | Line 110: | ||
{{\widehat{\mu }}^{\prime }}=4.3553 \\ | {{\widehat{\mu }}^{\prime }}=4.3553 \\ | ||
{{\widehat{\sigma' }}}=0.67677 \\ | {{\widehat{\sigma' }}}=0.67677 \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 119: | Line 119: | ||
{{\widehat{\mu }}^{\prime }}=4.3553 \\ | {{\widehat{\mu }}^{\prime }}=4.3553 \\ | ||
{{\widehat{\sigma' }}}=0.6768 \\ | {{\widehat{\sigma' }}}=0.6768 \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
===Suspension Data Example=== | ===Suspension Data Example=== | ||
Line 219: | Line 219: | ||
{{\widehat{\mu }}^{\prime }}=2.2223 \\ | {{\widehat{\mu }}^{\prime }}=2.2223 \\ | ||
{{\widehat{\sigma' }}}=0.3064 \\ | {{\widehat{\sigma' }}}=0.3064 \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 227: | Line 227: | ||
{{\widehat{\mu }}^{\prime }}=\left\{ 2.1336,2.3109 \right\} \\ | {{\widehat{\mu }}^{\prime }}=\left\{ 2.1336,2.3109 \right\} \\ | ||
{{\widehat{\sigma'}}}=\left\{ 0.2365,0.3970 \right\} \\ | {{\widehat{\sigma'}}}=\left\{ 0.2365,0.3970 \right\} \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 236: | Line 236: | ||
{} & {} & {} \\ | {} & {} & {} \\ | ||
\widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma' }}}})=0.001 & {} & \widehat{Var}\left( {{{\hat{\sigma '}}}} \right)=0.0016 \\ | \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma' }}}})=0.001 & {} & \widehat{Var}\left( {{{\hat{\sigma '}}}} \right)=0.0016 \\ | ||
\end{matrix} \right]</math> | \end{matrix} \right]\,\!</math> | ||
To replicate the published results (since Weibull++ uses a lognormal to the base | To replicate the published results (since Weibull++ uses a lognormal to the base <math>e\,\!</math> ), take the base-10 logarithm of the data and estimate the parameters using the normal distribution and MLE. | ||
*Weibull++ computed parameters for maximum likelihood are: | *Weibull++ computed parameters for maximum likelihood are: | ||
Line 246: | Line 246: | ||
{{\widehat{\mu }}^{\prime }}=2.2223 \\ | {{\widehat{\mu }}^{\prime }}=2.2223 \\ | ||
{{\widehat{\sigma' }}}=0.3064 \\ | {{\widehat{\sigma' }}}=0.3064 \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 254: | Line 254: | ||
{{\widehat{\mu }}^{\prime }}=\left\{ 2.1364,2.3081 \right\} \\ | {{\widehat{\mu }}^{\prime }}=\left\{ 2.1364,2.3081 \right\} \\ | ||
{{\widehat{\sigma'}}}=\left\{ 0.2395,0.3920 \right\} \\ | {{\widehat{\sigma'}}}=\left\{ 0.2395,0.3920 \right\} \\ | ||
\end{matrix}</math> | \end{matrix}\,\!</math> | ||
Line 263: | Line 263: | ||
{} & {} & {} \\ | {} & {} & {} \\ | ||
\widehat{Cov}({\mu }',{{{\hat{\sigma' }}}})=0.0009 & {} & \widehat{Var}\left( {{{\hat{\sigma' }}}} \right)=0.0015 \\ | \widehat{Cov}({\mu }',{{{\hat{\sigma' }}}})=0.0009 & {} & \widehat{Var}\left( {{{\hat{\sigma' }}}} \right)=0.0015 \\ | ||
\end{matrix} \right]</math> | \end{matrix} \right]\,\!</math> | ||
===Interval Data Example=== | ===Interval Data Example=== | ||
Line 300: | Line 300: | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma' }}}}= & 0.18 | & {{{\hat{\sigma' }}}}= & 0.18 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>X\ \,\!</math>: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma' }}}}= & 0.17 | & {{{\hat{\sigma' }}}}= & 0.17 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>Y\ \,\!</math>: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma' }}}}= & 0.21 | & {{{\hat{\sigma' }}}}= & 0.21 | ||
\end{align}</math> | \end{align}\,\!</math> |
Latest revision as of 21:46, 18 September 2023
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
These examples also appear in the Life data analysis reference.
Complete Data Example
Determine the lognormal parameter estimates for the data given in the following table.
Non-Grouped Times-to-Failure Data | ||
Data point index | State F or S | State End Time |
---|---|---|
1 | F | 2 |
2 | F | 5 |
3 | F | 11 |
4 | F | 23 |
5 | F | 29 |
6 | F | 37 |
7 | F | 43 |
8 | F | 59 |
Solution
Using Weibull++, the computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {\hat{\sigma '}}= & 1.10 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ X\,\! }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.24 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ Y:\,\! }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.36 \end{align}\,\! }[/math]
Complete Data RRX Example
From Kececioglu [20, p. 347]. 15 identical units were tested to failure and following is a table of their failure times:
Solution
Published results (using probability plotting):
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=5.22575 \\ {{\widehat{\sigma' }}}=0.62048. \\ \end{matrix}\,\! }[/math]
Weibull++ computed parameters for rank regression on X are:
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=5.2303 \\ {{\widehat{\sigma'}}}=0.6283. \\ \end{matrix}\,\! }[/math]
The small differences are due to the precision errors when fitting a line manually, whereas in Weibull++ the line was fitted mathematically.
Complete Data Unbiased MLE Example
From Kececioglu [19, p. 406]. 9 identical units are tested continuously to failure and failure times were recorded at 30.4, 36.7, 53.3, 58.5, 74.0, 99.3, 114.3, 140.1 and 257.9 hours.
Solution
The results published were obtained by using the unbiased model. Published Results (using MLE):
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=4.3553 \\ {{\widehat{\sigma' }}}=0.67677 \\ \end{matrix}\,\! }[/math]
This same data set can be entered into Weibull++ by creating a data sheet capable of handling non-grouped time-to-failure data. Since the results shown above are unbiased, the Use Unbiased Std on Normal Data option in the User Setup must be selected in order to duplicate these results.
Weibull++ computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=4.3553 \\ {{\widehat{\sigma' }}}=0.6768 \\ \end{matrix}\,\! }[/math]
Suspension Data Example
From Nelson [30, p. 324]. 96 locomotive controls were tested, 37 failed and 59 were suspended after running for 135,000 miles. The table below shows the failure and suspension times.
Nelson's Locomotive Data | |||
Number in State | F or S | Time | |
---|---|---|---|
1 | 1 | F | 22.5 |
2 | 1 | F | 37.5 |
3 | 1 | F | 46 |
4 | 1 | F | 48.5 |
5 | 1 | F | 51.5 |
6 | 1 | F | 53 |
7 | 1 | F | 54.5 |
8 | 1 | F | 57.5 |
9 | 1 | F | 66.5 |
10 | 1 | F | 68 |
11 | 1 | F | 69.5 |
12 | 1 | F | 76.5 |
13 | 1 | F | 77 |
14 | 1 | F | 78.5 |
15 | 1 | F | 80 |
16 | 1 | F | 81.5 |
17 | 1 | F | 82 |
18 | 1 | F | 83 |
19 | 1 | F | 84 |
20 | 1 | F | 91.5 |
21 | 1 | F | 93.5 |
22 | 1 | F | 102.5 |
23 | 1 | F | 107 |
24 | 1 | F | 108.5 |
25 | 1 | F | 112.5 |
26 | 1 | F | 113.5 |
27 | 1 | F | 116 |
28 | 1 | F | 117 |
29 | 1 | F | 118.5 |
30 | 1 | F | 119 |
31 | 1 | F | 120 |
32 | 1 | F | 122.5 |
33 | 1 | F | 123 |
34 | 1 | F | 127.5 |
35 | 1 | F | 131 |
36 | 1 | F | 132.5 |
37 | 1 | F | 134 |
38 | 59 | S | 135 |
Solution
The distribution used in the publication was the base-10 lognormal. Published results (using MLE):
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=2.2223 \\ {{\widehat{\sigma' }}}=0.3064 \\ \end{matrix}\,\! }[/math]
Published 95% confidence limits on the parameters:
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=\left\{ 2.1336,2.3109 \right\} \\ {{\widehat{\sigma'}}}=\left\{ 0.2365,0.3970 \right\} \\ \end{matrix}\,\! }[/math]
Published variance/covariance matrix:
- [math]\displaystyle{ \left[ \begin{matrix} \widehat{Var}\left( {{{\hat{\mu }}}^{\prime }} \right)=0.0020 & {} & \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma' }}}})=0.001 \\ {} & {} & {} \\ \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma' }}}})=0.001 & {} & \widehat{Var}\left( {{{\hat{\sigma '}}}} \right)=0.0016 \\ \end{matrix} \right]\,\! }[/math]
To replicate the published results (since Weibull++ uses a lognormal to the base [math]\displaystyle{ e\,\! }[/math] ), take the base-10 logarithm of the data and estimate the parameters using the normal distribution and MLE.
- Weibull++ computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=2.2223 \\ {{\widehat{\sigma' }}}=0.3064 \\ \end{matrix}\,\! }[/math]
- Weibull++ computed 95% confidence limits on the parameters:
- [math]\displaystyle{ \begin{matrix} {{\widehat{\mu }}^{\prime }}=\left\{ 2.1364,2.3081 \right\} \\ {{\widehat{\sigma'}}}=\left\{ 0.2395,0.3920 \right\} \\ \end{matrix}\,\! }[/math]
- Weibull++ computed/variance covariance matrix:
- [math]\displaystyle{ \left[ \begin{matrix} \widehat{Var}\left( {{{\hat{\mu }}}^{\prime }} \right)=0.0019 & {} & \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma' }}}})=0.0009 \\ {} & {} & {} \\ \widehat{Cov}({\mu }',{{{\hat{\sigma' }}}})=0.0009 & {} & \widehat{Var}\left( {{{\hat{\sigma' }}}} \right)=0.0015 \\ \end{matrix} \right]\,\! }[/math]
Interval Data Example
Determine the lognormal parameter estimates for the data given in the table below.
Non-Grouped Data Times-to-Failure with Intervals | ||
Data point index | Last Inspected | State End Time |
---|---|---|
1 | 30 | 32 |
2 | 32 | 35 |
3 | 35 | 37 |
4 | 37 | 40 |
5 | 42 | 42 |
6 | 45 | 45 |
7 | 50 | 50 |
8 | 55 | 55 |
Solution
This is a sequence of interval times-to-failure where the intervals vary substantially in length. Using Weibull++, the computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.18 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ X\ \,\! }[/math]:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.17 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ Y\ \,\! }[/math]:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.21 \end{align}\,\! }[/math]