Template:Example: Normal General Example Interval Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Normal Distribution General Example Interval Data'''
#REDIRECT[[Normal_Distribution_Examples#Interval_Censored_Data]]
 
Eight units are being reliability tested and the following is a table of their times-to-failure:
 
 
{|align="center" border=1 cellspacing=1
|-
|colspan="3" style="text-align:center"| Table - Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
|-
!Data point index
!Last Inspected
!State End Time
|-
|1 ||30||32
|-
|2 ||32||35
|-
|3 ||35||37
|-
|4 ||37||40
|-
|5 ||42||42
|-
|6 ||45||45
|-
|7||50||50
|-
|8||55||55
|}
 
'''Solution'''
 
This is a sequence of interval times-to-failure. This data set can be entered into Weibull++ by creating a data sheet that can be used to analyze times-to-failure data with interval and left censored data.
 
<math></math>
[[Image:lastinspected.png|thumb|center|250px| ]]
 
[[Image:lastinspectedsheet.png|thumb|center|250px]]
 
The computed parameters for maximum likelihood are:
 
::<math>\begin{align}
  & \widehat{\mu }= & 41.40 \\
& {{{\hat{\sigma }}}_{T}}= & 7.740. 
\end{align}</math>
 
For rank regression on x:
 
::<math>\begin{align}
  & \widehat{\mu }= & 41.40 \\
& {{{\hat{\sigma }}}_{T}}= & 9.03. 
\end{align}</math>
 
For rank regression on y:
 
::<math>\begin{align}
  & \widehat{\mu }= & 41.39 \\
& {{{\hat{\sigma }}}_{T}}= & 9.25. 
\end{align}</math>
 
 
A plot of the RRX solution is shown next.
 
<math></math>
[[Image:lastinspectedplot.png|thumb|center|250px| ]]

Latest revision as of 05:16, 14 August 2012