Loglogistic Distribution Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" |- | valign="middle" align="left" bgcolor=EEEDF7|[[Image:Weibull-E…')
 
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
<noinclude>{{Banner Weibull Examples}}
|-
''This example appears in the [https://help.reliasoft.com/reference/life_data_analysis Life data analysis reference]''.</noinclude>
| valign="middle" align="left" bgcolor=EEEDF7|[[Image:Weibull-Examples-banner.png|400px|center]]
|}
<br>Determine the loglogistic parameter estimates for the data given in Table 10.3.


<center><math>\overset{{}}{\mathop{\text{Table 10}\text{.3 - Test data}}}\,</math></center>
Determine the loglogistic parameter estimates for the data given in the following table.
 
<center><math>\overset{{}}{\mathop{\text{Test data}}}\,\,\!</math></center>


<center><math>\begin{matrix}
<center><math>\begin{matrix}
Line 19: Line 18:
   \text{9} & \text{675} & \text{680}  \\
   \text{9} & \text{675} & \text{680}  \\
   \text{10} & \text{884} & \text{889}  \\
   \text{10} & \text{884} & \text{889}  \\
\end{matrix}</math></center>
\end{matrix}\,\!</math></center>




Using Times-to-failure data under the Folio Data Type and the My data set contains interval and/or left censored data under Times-to-failure data options to enter the above data, the computed parameters for maximum likelihood are calculated to be:  
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:


::<math>\begin{align}
::<math>\begin{align}
   & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\  
   & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\  
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256   
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256   
\end{align}</math>
\end{align}\,\!</math>


 
For rank regression on <math>X\,\!</math>:  
For rank regression on <math>X\ \ :</math>   


::<math>\begin{align}
::<math>\begin{align}
   & \hat{\mu }= & 5.9281 \\  
   & \hat{\mu }= & 5.9281 \\  
  & \hat{\sigma }= & 0.3821   
  & \hat{\sigma }= & 0.3821   
\end{align}</math>
\end{align}\,\!</math>
 


For rank regression on <math>Y\ \ :</math>   
For rank regression on <math>Y\,\!</math>:  


::<math>\begin{align}
::<math>\begin{align}
   & \hat{\mu }= & 5.9772 \\  
   & \hat{\mu }= & 5.9772 \\  
  & \hat{\sigma }= & 0.3256   
  & \hat{\sigma }= & 0.3256   
\end{align}</math>
\end{align}\,\!</math>

Latest revision as of 21:39, 18 September 2023

Weibull Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.




This example appears in the Life data analysis reference.

Determine the loglogistic parameter estimates for the data given in the following table.

[math]\displaystyle{ \overset{{}}{\mathop{\text{Test data}}}\,\,\! }[/math]
[math]\displaystyle{ \begin{matrix} \text{Data point index} & \text{Last Inspected} & \text{State End time} \\ \text{1} & \text{105} & \text{106} \\ \text{2} & \text{197} & \text{200} \\ \text{3} & \text{297} & \text{301} \\ \text{4} & \text{330} & \text{335} \\ \text{5} & \text{393} & \text{401} \\ \text{6} & \text{423} & \text{426} \\ \text{7} & \text{460} & \text{468} \\ \text{8} & \text{569} & \text{570} \\ \text{9} & \text{675} & \text{680} \\ \text{10} & \text{884} & \text{889} \\ \end{matrix}\,\! }[/math]


Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align}\,\! }[/math]

For rank regression on [math]\displaystyle{ X\,\! }[/math]:

[math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align}\,\! }[/math]

For rank regression on [math]\displaystyle{ Y\,\! }[/math]:

[math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align}\,\! }[/math]