Template:Weibull++ Non-Parametric LDA Plot Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
'''Weibull++ Non-Parametric LDA Plot Example'''
#REDIRECT[[Weibull++ Non-Parametric LDA Plot Example]]
 
This example shows how to use Weibull++ to do non-parametric LDA analysis. Weibull++ has three different  non-parametric LDA method: Kaplan-Meier, Actuarial Standard, and Actuarial Simple. They are very similar.
 
Assume we have the following data.
 
{| | border="1" class="wikitable" style="margin: 1em auto 1em auto"
| align="center" style="background:#f0f0f0;"|'''Number in State'''
| align="center" style="background:#f0f0f0;"|'''State F or S'''
| align="center" style="background:#f0f0f0;"|'''State End Time'''
|-
| 3||F||9
|-
| 1||S||9
|-
| 1||F||11
|-
| 1||S||12
|-
| 1||F||13
|-
| 1||S||13
|-
| 1||S||15
|-
| 1||F||17
|-
| 1||F||21
|-
| 1||S||22
|-
| 1||S||24
|-
| 1||S||26
|-
| 1||F||28
|-
| 1||F||30
|-
| 1||S||32
|-
| 2||S||35
|-
| 1||S||39
|-
| 1||S||41
 
|}
 
 
Please analyze the above data using Kaplan-Meier method in Weibull++.
 
'''Solution'''
 
'''Step 1:''' Create a Non-Parametric Specialized Folio.
[[Image: Select Non Parametric LDA.png|thumb|center|400px]]
 
'''Step 2:''' Enter the data as given in below Figure:
 
[[Image: Kaplan Meier Method Data.png|thumb|center|400px]]
 
In the control panel, a confidence level can be entered. '''Reliability''' at each '''State End Time''' is calculated and plotted together with the confidence bounds.
 
'''Step 3:''' Plot the result.
[[Image: Kaplan Meier Method Plot.png|thumb|center|400px]]
 
Since the analysis is done by non-parametric method, only the reliability at the observed state time can be calculated. Non-parametric methods cannot be used for extrapolation and interpolation.
 
'''Step 4:''' The results also can be viewed by clicking '''Non-Parametric Results''':
 
[[Image: Kaplan Meier View Results.png|thumb|center|400px]]
 
[[Image: Kaplan Meier Summary Results.png|thumb|center|400px]]

Latest revision as of 06:18, 16 August 2012