Template:Exponential Distribution Example: Likelihood Ratio Bound for lambda: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(Redirected page to The Exponential Distribution)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
'''Likelihood Ratio Bound on <math>\lambda </math>'''
#REDIRECT [[The Exponential Distribution]]
 
Five units are put on a reliability test and experience failures at 20, 40, 60, 100, and 150 hours. Assuming an exponential distribution, the MLE parameter estimate is calculated to be  <math>\hat{\lambda }=0.013514.</math>  Calculate the 85% two-sided confidence bounds on these parameters using the likelihood ratio method.
 
 
'''Solution'''
 
The first step is to calculate the likelihood function for the parameter estimates:
 
::<math>\begin{align}
  L(\hat{\lambda })= & \underset{i=1}{\overset{N}{\mathop \prod }}\,f({{x}_{i}};\hat{\lambda })=\underset{i=1}{\overset{N}{\mathop \prod }}\,\hat{\lambda }\cdot {{e}^{-\hat{\lambda }\cdot {{x}_{i}}}} \\
  L(\hat{\lambda })= & \underset{i=1}{\overset{5}{\mathop \prod }}\,0.013514\cdot {{e}^{-0.013514\cdot {{x}_{i}}}} \\
  L(\hat{\lambda })= & 3.03647\times {{10}^{-12}} 
\end{align}</math>
 
where <math>{{x}_{i}}</math> are the original time-to-failure data points. We can now rearrange the likelihood ratio equation to the form:
 
::<math>L(\lambda )-L(\hat{\lambda })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}=0</math>
 
Since our specified confidence level, <math>\delta </math>, is 85%, we can calculate the value of the chi-squared statistic, <math>\chi _{0.85;1}^{2}=2.072251.</math> We can now substitute this information into the equation:
 
::<math>\begin{align}
  L(\lambda )-L(\hat{\lambda })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}= & 0, \\
  L(\lambda )-3.03647\times {{10}^{-12}}\cdot {{e}^{\tfrac{-2.072251}{2}}}= & 0, \\
  L(\lambda )-1.07742\times {{10}^{-12}}= & 0. 
\end{align}</math>
 
It now remains to find the values of <math>\lambda </math> which satisfy this equation. Since there is only one parameter, there are only two values of <math>\lambda </math> that will satisfy the equation.  These values represent the <math>\delta =85%</math> two-sided confidence limits of the parameter estimate <math>\hat{\lambda }</math>. For our problem, the confidence limits are:
 
::<math>{{\lambda }_{0.85}}=(0.006572,0.024172)</math>

Latest revision as of 08:41, 10 August 2012