Template:Example: Weibull Distribution Suspension and Interval Data Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(Redirected page to Weibull Distribution Examples)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Published 3P Weibull Distribution Probability Plot Example'''
#REDIRECT [[Weibull Distribution Examples]]
 
Suppose we want to model a left censored, right censored, interval, and complete data set, consisting of 274 units under test of which 185 units fail. The following Table contains the data.
 
{| {| border="1" class="wikitable" style="margin: 1em auto 1em auto"
  |+ The Test Data'''
| align="center" style="background:#f0f0f0;"|'''Data Point Index'''
| align="center" style="background:#f0f0f0;"|'''Number in State'''
| align="center" style="background:#f0f0f0;"|'''Last Inspection'''
| align="center" style="background:#f0f0f0;"|'''State (S or F)'''
| align="center" style="background:#f0f0f0;"|'''State End Time'''
|-
| 1||2||5||F||5
|-
| 2||23||5||S||5
|-
| 3||28||0||F||7
|-
| 4||4||10||F||10
|-
| 5||7||15||F||15
|-
| 6||8||20||F||20
|-
| 7||29||20||S||20
|-
| 8||32||0||F||22
|-
| 9||6||25||F||25
|-
| 10||4||27||F||30
|-
| 11||8||30||F||35
|-
| 12||5||30||F||40
|-
| 13||9||27||F||45
|-
| 14||7||25||F||50
|-
| 15||5||20||F||55
|-
| 16||3||15||F||60
|-
| 17||6||10||F||65
|-
| 18||3||5||F||70
|-
| 19||37||100||S||100
|-
| 20||48||0||F||102
|-
|
|}
 
 
'''Solution'''
 
This data set can be entered into Weibull++ by selecting the '''Times-to-failure''' and ''' My data set contains suspensions (right censored data), My data set contains interval and/or left censored data''' and '''I want to enter data in groups options'''.
 
 
Since standard ranking methods for dealing with these different data types are inadequate, we will want to use the ReliaSoft ranking method. This option is the default in Weibull++ when dealing with interval data.
 
The computed parameters using MLE are:
 
 
using RRX:
 
 
and using RRY:
 
 
The plot with the two-sided 90% confidence bounds for the rank regression on X solution is:

Latest revision as of 02:14, 14 August 2012