ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Eyring]]
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|  valign="middle" |{{Font|Standard Folio Data Eyring-Weibull|11|tahoma|bold|gray}}
|-
|  valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|  valign="middle" |
The  <math>pdf</math>  for 2-parameter Weibull distribution is given by:
<br>
<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math>
<br>
The scale parameter (or characteristic life) of the Weibull distribution is  <math>\eta </math> . The Eyring-Weibull model  <math>pdf</math>  can then be obtained by setting  <math>\eta =L(V)</math>  in Eqn. (eyring):
<br>
<math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
<br>
or:
<br>
<math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
<br>
Substituting for  <math>\eta </math>  into Eqn. (Eyrpdf):
<br>
<math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math>
|-
|  valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
|-
|  valign="middle" | [Example:Eyring| See an example]
|}
<br>
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]

Latest revision as of 18:56, 8 July 2015