Template:Lognormal distribution probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(Redirected page to The Lognormal Distribution)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Lognormal Probability Density Function==
#REDIRECT [[The Lognormal Distribution]]
 
The lognormal distribution is a two-parameter distribution with parameters  <math>{\mu }'</math>  and  <math>\sigma'</math> . The  <math>pdf</math>  for this distribution is given by:
 
::<math>f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{t}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}}</math>
 
where,
 
:<math>{t}'=\ln (t)</math>. <math>t</math>  values are the times-to-failure, and
 
:<math>\mu'=\text{mean of the natural logarithms of the times-to-failure,}</math>
 
:<math>\sigma'=\text{standard deviation of the natural logarithms}</math>
 
:<math>\text{of the times-to-failure}</math>
 
The lognormal  <math>pdf</math>  can be obtained, realizing that for equal probabilities under the normal and lognormal  <math>pdf</math> s, incremental areas should also be equal, or:
 
::<math>f(t)dt=f({t}')d{t}'</math>
 
Taking the derivative yields:
 
::<math>d{t}'=\frac{dt}{t}</math>
 
:Substitution yields:
 
::<math>\begin{align}
  f(t)= & \frac{f({t}')}{t}, \\
  f(t)= & \frac{1}{t\cdot {{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(t)-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} 
\end{align}</math>
 
:where:
 
::<math>f(t)\ge 0,T>0,-\infty <{\mu }'<\infty ,{{\sigma' }}>0</math>

Latest revision as of 04:41, 13 August 2012