Weibull++ Standard Folio Data 1P-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_1P-Exponential]]
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]]
|}
 
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
| valign="middle" |{{Font|Standard Folio Data 1P-Exponential|11|tahoma|bold|gray}}
|-
| valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
|-
| valign="middle" |
===The One-Parameter Exponential Distribution===
The one-parameter exponential <math>pdf</math> is obtained by setting <math>\gamma =0</math>, and is given by:
 
<math> \begin{align}f(t)= & \lambda {{e}^{-\lambda t}}=\frac{1}{m}{{e}^{-\tfrac{1}{m}t}},
  & t\ge 0, \lambda >0,m>0
\end{align}
</math>
 
where:
 
This distribution requires the knowledge of only one parameter, <math>\lambda </math>, for its application. Some of the characteristics of the one-parameter exponential distribution are [[Appendix: Weibull References|
[19]]]:
#The location parameter, <math>\gamma </math>, is zero.
#The scale parameter is <math>\tfrac{1}{\lambda }=m</math>.
#As <math>\lambda </math> is decreased in value, the distribution is stretched out to the right, and as <math>\lambda </math> is increased, the distribution is pushed toward the origin.
#This distribution has no shape parameter as it has only one shape, i.e. the exponential, and the only parameter it has is the failure rate, <math>\lambda </math>.
#The distribution starts at <math>t=0</math> at the level of <math>f(t=0)=\lambda </math> and decreases thereafter exponentially and monotonically as <math>t</math> increases, and is convex.
#As <math>t\to \infty </math> , <math>f(t)\to 0</math>.
#The <math>pdf</math> can be thought of as a special case of the Weibull <math>pdf</math> with <math>\gamma =0</math>  and <math>\beta =1</math>.
 
|-
| valign="middle" | [http://www.reliawiki.com/index.php/The_Exponential_Distribution Exponential Distribution]
|-
| valign="middle" | [http://www.reliawiki.com/index.php/Template:One_parameter_exponential_distribution_example See Examples...]
|}
 
<br/>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Exponential&action=edit]]

Latest revision as of 20:42, 10 July 2015