ALTA ALTA Standard Folio Data Eyring-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Eyring]]
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
! scope="col" |
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
| align="center" valign="middle" |{{Font|Standard Folio Data Eyring-Exponential|11|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" |
The <math>pdf</math> of the 1-parameter exponential distribution is given by:
 
<br>
<math>f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}}</math>
 
<br>
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
 
<br>
<math>\lambda =\frac{1}{m}</math>
 
<br>
thus:
 
<br>
<math>f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}}</math>
 
<br>
The Eyring-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (eyring):
 
<br>
<math>m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
 
<br>
and substituting for  <math>m</math>  in Eqn. (pdfexpm2):
 
<br>
<math>f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}}</math>
 
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
 
|}
 
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Exponential&action=edit]]

Latest revision as of 18:55, 8 July 2015