Template:Generalized eyring-weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Generalized Eyring-Weibull=== <br> By setting <math>\eta =L(V,U)</math> from Eqn. (Gen-Eyr), the generalized Eyring Weibull model is given by: <br> ::<math>\begin{align} …')
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
===Generalized Eyring-Weibull===
#REDIRECT [[Eyring_Relationship#Generalized_Eyring-Weibull]]
<br>
By setting  <math>\eta =L(V,U)</math>  from Eqn. (Gen-Eyr), the generalized Eyring Weibull model is given by:
 
<br>
::<math>\begin{align}
  & f(t,V,U)= & \beta \left( V{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right){{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta -1}} \\
&  & .{{e}^{-{{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta }}}} 
\end{align}</math>
 
 
====Generalized Eyring-Weibull Reliability Function====
 
The generalized Eyring Weibull reliability function is given by:
 
 
<br>
::<math>R(T,V,U)={{e}^{-{{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta }}}}</math>
 
 
====Parameter Estimation====
 
Substituting the generalized Eyring model into the Weibull log-likelihood equation yields:
 
<br>
::<math>\begin{align}
  & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\beta \left( V{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right) \\
&  & {{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta -1}}] \\
&  & -\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}{{\left( {{t}_{i}}{{V}_{i}}{{e}^{-A-\tfrac{B}{{{V}_{i}}}-C{{U}_{i}}-D\tfrac{{{U}_{i}}}{{{V}_{i}}}}} \right)}^{\beta }} \\
&  & -\overset{S}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }{{\left( t_{i}^{\prime }V_{i}^{\prime }{{e}^{-A-\tfrac{B}{V_{i}^{\prime }}-CU_{i}^{\prime }-D\tfrac{U_{i}^{\prime }}{V_{i}^{\prime }}}} \right)}^{\beta }} \\
&  & +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }]
\end{align}</math>
 
<br>
:where:
<br>
<br>
::<math>R_{Li}^{\prime \prime }(T_{Li}^{\prime \prime })={{e}^{-{{\left( T_{Li}^{\prime \prime }V_{i}^{\prime \prime }{{e}^{-A-\tfrac{B}{V_{i}^{\prime \prime }}-C{{U}_{i}}-D\tfrac{{{U}_{i}}}{V_{i}^{\prime \prime }}}} \right)}^{\beta }}}}</math>
 
<br>
::<math>R_{Ri}^{\prime \prime }(T_{Ri}^{\prime \prime })={{e}^{-{{\left( T_{Ri}^{\prime \prime }V_{i}^{\prime \prime }{{e}^{-A-\tfrac{B}{V_{i}^{\prime \prime }}-C{{U}_{i}}-D\tfrac{{{U}_{i}}}{V_{i}^{\prime \prime }}}} \right)}^{\beta }}}}</math>
 
<br>
:and:
<br>
• <math>{{F}_{e}}</math>  is the number of groups of exact times-to-failure data points.
 
• <math>{{N}_{i}}</math>  is the number of times-to-failure data points in the  <math>{{i}^{th}}</math>  time-to-failure data group.
 
• <math>A,B,C,D</math>  are parameters to be estimated.
 
• <math>{{V}_{i}}</math>  is the temperature level of the  <math>{{i}^{th}}</math>  group.
 
• <math>{{U}_{i}}</math>  is the non-thermal stress level of the  <math>{{i}^{th}}</math>  group.
 
• <math>{{T}_{i}}</math>  is the exact failure time of the  <math>{{i}^{th}}</math>  group.
 
• <math>S</math>  is the number of groups of suspension data points.
 
• <math>N_{i}^{\prime }</math>  is the number of suspensions in the  <math>{{i}^{th}}</math>  group of suspension data points.
 
• <math>T_{i}^{\prime }</math>  is the running time of the  <math>{{i}^{th}}</math>  suspension data group.
 
• <math>FI</math>  is the number of interval data groups.
 
• <math>N_{i}^{\prime \prime }</math>  is the number of intervals in the  <math>{{i}^{th}}</math>  group of data intervals.
 
• <math>T_{Li}^{\prime \prime }</math>  is the beginning of the  <math>{{i}^{th}}</math>  interval.
 
• <math>T_{Ri}^{\prime \prime }</math>  is the ending of the  <math>{{i}^{th}}</math>  interval.
<br>
<br>
The solution (parameter estimates) will be found by solving for the parameters  <math>A,</math>  <math>B,</math>  <math>C,</math> and  <math>D</math>  so that  <math>\tfrac{\partial \Lambda }{\partial A}=0,</math>  <math>\tfrac{\partial \Lambda }{\partial B}=0,</math>  <math>\tfrac{\partial \Lambda }{\partial D}=0</math>  and  <math>\tfrac{\partial \Lambda }{\partial D}=0</math> .
<br>

Latest revision as of 00:43, 17 August 2012