Template:Eyring-ex stat prop sum: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
===Eyring-Exponential Statistical Properties Summary===
#REDIRECT [[Eyring_Relationship#Eyring-Exponential]]
{{eyring-ex mean}}
 
{{eyring-ex median}}
 
====Mode====
<br>
The mode,  <math>\tilde{T},</math>
for the Eyring-exponential model is <math>\tilde{T}=0.</math>
<br>
====Standard Deviation====
<br>
The standard deviation,  <math>{{\sigma }_{T}}</math>, for the Eyring-exponential model is given by:
<br>
::<math>{{\sigma }_{T}}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
<br>
====Eyring-Exponential Reliability Function====
<br>
The Eyring-exponential reliability function is given by:
 
<br>
::<math>R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
 
<br>
This function is the complement of the Eyring-exponential cumulative distribution function or:
 
<br>
::<math>R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT</math>
 
<br>
:and:
 
<br>
::<math>R(T,V)=1-\mathop{}_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
 
====Conditional Reliability====
<br>
The conditional reliability function for the Eyring-exponential model is given by:
<br>
::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-\lambda (T+t)}}}{{{e}^{-\lambda T}}}={{e}^{-t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
<br>
====Reliable Life====
<br>
For the Eyring-exponential model, the reliable life, or the mission duration for a desired reliability goal,  <math>{{t}_{R,}}</math>  is given by:
<br>
::<math>R({{t}_{R}},V)={{e}^{-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
<br>
::<math>\ln [R({{t}_{R}},V)]=-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
<br>
:or:
<br>
::<math>{{t}_{R}}=-\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\ln [R({{t}_{R}},V)]</math>

Latest revision as of 22:59, 16 August 2012