Template:Three-parameter weibull distribution: Difference between revisions
Jump to navigation
Jump to search
(Created page with '=== The Three-Parameter Weibull Distribution === The three-parameter Weibull ''pdf'' is given by: ::<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T-\gamma }{\eta }}\right) …') |
m (Removed t>=0.) |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The 3-parameter Weibull ''pdf'' is given by: | |||
::<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\!</math> | |||
: | where: | ||
: | ::<math> f(t)\geq 0,\text{ }t\geq \gamma \,\!</math> | ||
::<math> | ::<math>\beta>0\ \,\!</math> | ||
::<math> \eta > 0 \,\!</math> | |||
::<math> \eta > 0 \,\!</math> | |||
::<math> -\infty < \gamma < +\infty \,\!</math> | ::<math> -\infty < \gamma < +\infty \,\!</math> | ||
: | and: | ||
::<math> \eta= \,\!</math> scale parameter, or characteristic life | ::<math> \eta= \,\!</math> scale parameter, or characteristic life | ||
::<math> \beta= \,\!</math> shape parameter (or slope) | ::<math> \beta= \,\!</math> shape parameter (or slope) | ||
::<math> \gamma= \,\!</math> location parameter (or failure free life) | ::<math> \gamma= \,\!</math> location parameter (or failure free life) |
Latest revision as of 17:50, 6 July 2017
The 3-parameter Weibull pdf is given by:
- [math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\! }[/math]
where:
- [math]\displaystyle{ f(t)\geq 0,\text{ }t\geq \gamma \,\! }[/math]
- [math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
- [math]\displaystyle{ \eta \gt 0 \,\! }[/math]
- [math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]
and:
- [math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
- [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
- [math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)