WeibullGeneralOptions Class: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
{| {{APITable}}
{| {{APITable}}
|-
|-
| style="width: 180px;"|AllowBiasingNormal||Indicates whether to correct the MLE standard deviation (sigma) value for biasedness (applies to complete data only). '''Boolean'''.
| style="width: 180px;"|AllowBiasingNormal||Indicates whether to correct the MLE standard deviation (sigma) value for biasedness (applies to complete data only). '''Boolean'''. Default value = False.
|-
|-
|DiscardNegLocation||Indicates whether to discard the location parameter when it contains a negative value. '''Boolean'''.
|DiscardNegLocation||Indicates whether to discard the location parameter when it contains a negative value. '''Boolean'''. Default value = False.
|-
|-
|ResetExpLocation||Indicates whether to reset the value of the location parameter equal to the first failure time, T1, if the parameter is greater than T1. (Exponential distribution only.) '''Boolean'''.
|ResetExpLocation||Indicates whether to reset the value of the location parameter equal to the first failure time, T1, if the parameter is greater than T1. (Exponential distribution only.) '''Boolean'''. Default value = True.
|-
|-
|Use3PTrueMLE||Indicates whether to use a true 3-parameter MLE solution for 3-parameter Weibull. '''Boolean'''.
|Use3PTrueMLE||Indicates whether to use a true 3-parameter MLE solution for 3-parameter Weibull. '''Boolean'''. Default value = False.
|-
|-
|UseExtendedGGamma||Indicates whether to allow the lambda parameter of the generalized gamma distribution to take negative values. '''Boolean'''.
|UseExtendedGGamma||Indicates whether to allow the lambda parameter of the generalized gamma distribution to take negative values. '''Boolean'''. Default value = True.
|-
|-
|UsePlottedYPoints||Indicates whether to use the plotted points (using median ranks or Kaplan-Meier) to calculate the difference between observed and model estimated probability for the Kolmogorov-Smirnov test. '''Boolean'''.
|UsePlottedYPoints||Indicates whether to use the plotted points (using median ranks or Kaplan-Meier) to calculate the difference between observed and model estimated probability for the Kolmogorov-Smirnov test. '''Boolean'''. Default value = True.
|-
|-
|WarnNegLocation||Indicates whether a warning will be generated when the location parameter contains a negative value. '''Boolean'''.
|WarnNegLocation||Indicates whether a warning will be generated when the location parameter contains a negative value. '''Boolean'''. Default value = False.
|}
|}



Revision as of 18:50, 29 April 2016

APIWiki.png


Member of: SynthesisAPI


Represents miscellaneous analysis settings for an associated WeibullDataSet object.

Properties

Name Description
AllowBiasingNormal Indicates whether to correct the MLE standard deviation (sigma) value for biasedness (applies to complete data only). Boolean. Default value = False.
DiscardNegLocation Indicates whether to discard the location parameter when it contains a negative value. Boolean. Default value = False.
ResetExpLocation Indicates whether to reset the value of the location parameter equal to the first failure time, T1, if the parameter is greater than T1. (Exponential distribution only.) Boolean. Default value = True.
Use3PTrueMLE Indicates whether to use a true 3-parameter MLE solution for 3-parameter Weibull. Boolean. Default value = False.
UseExtendedGGamma Indicates whether to allow the lambda parameter of the generalized gamma distribution to take negative values. Boolean. Default value = True.
UsePlottedYPoints Indicates whether to use the plotted points (using median ranks or Kaplan-Meier) to calculate the difference between observed and model estimated probability for the Kolmogorov-Smirnov test. Boolean. Default value = True.
WarnNegLocation Indicates whether a warning will be generated when the location parameter contains a negative value. Boolean. Default value = False.


Example

The following example demonstrates how to initialize the settings for a particular WeibullDataSet object.

VBA

 'Declare a new WeibullDataSet object. 
  Dim WDS As New WeibullDataSet
 
 'Specify the settings. 
  WDS.GeneralSettings.AllowBiasingNormal = False
  WDS.GeneralSettings.DiscardNegLocation = False
  WDS.GeneralSettings.ResetExpLocation = True
  WDS.GeneralSettings.Use3PTrueMLE = False
  WDS.GeneralSettings.UseExtendedGGamma = False
  WDS.GeneralSettings.UsePlottedYPoints = False
  WDS.GeneralSettings.WarnNegLocation = False

 'Add failure times to the data set. 
  Call WDS.AddFailure(100, 1)
  Call WDS.AddFailure(120, 1)
  Call WDS.AddFailure(130, 1)  

 'Analyze the data set. 
  WDS.Calculate()
VB.NET

 'Declare a new WeibullDataSet object. 
  Dim WDS As New WeibullDataSet
 
 'Specify the settings. 
  WDS.GeneralSettings.AllowBiasingNormal = False
  WDS.GeneralSettings.DiscardNegLocation = False
  WDS.GeneralSettings.ResetExpLocation = True
  WDS.GeneralSettings.Use3PTrueMLE = False
  WDS.GeneralSettings.UseExtendedGGamma = False
  WDS.GeneralSettings.UsePlottedYPoints = False
  WDS.GeneralSettings.WarnNegLocation = False
 
 'Add failure times to the data set. 
  WDS.AddFailure(100, 1)
  WDS.AddFailure(120, 1)
  WDS.AddFailure(130, 1)  

 'Analyze the data set. 
  WDS.Calculate()