Expected Failure Time Plot: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
= Expected Failure Time Plot = | = Expected Failure Time Plot = | ||
When a reliability life test is planned it is useful to visualize the expected outcome of the experiment. The Expected Failure Time Plot (introduced by ReliaSoft in Weibull++ 8)provides such a visual. | When a reliability life test is planned it is useful to visualize the expected outcome of the experiment. The Expected Failure Time Plot (introduced by ReliaSoft in Weibull++ 8)provides such a visual. Figure 1 below shows such a plot for h a sample size of 5 and an assumed Weibull distribution with β = 2 and η = 2,000 hrs and at a 90% confidence. | ||
{| width="200" border="0" cellpadding="1" cellspacing="1" align="center" | {| width="200" border="0" cellpadding="1" cellspacing="1" align="center" siber__q92dpb7seovvtbh5__vptr="7123c60" sourceindex="11" | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="712a130" sourceindex="13" | ||
| | | siber__q92dpb7seovvtbh5__vptr="71239d0" sourceindex="14" | | ||
[[Image:EFTP1.png|border|center|700px|Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with b=2 and h-1,500 hrs and at a 90% confidence.]] | [[Image:EFTP1.png|border|center|700px|Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with b=2 and h-1,500 hrs and at a 90% confidence.]] | ||
'''Fig. 1:''' Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with < | '''Fig. 1:''' Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="40bcc0" sourceindex="19">β = 2</span> and <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="71034e0" sourceindex="20">η = 2,000</span> hrs and at a 90% confidence. | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103710" sourceindex="21" | ||
| | | siber__q92dpb7seovvtbh5__vptr="71037e0" sourceindex="22" | | ||
|} | |} | ||
<br> | <br> | ||
==Interpreting the EFT Plot== | |||
<br> | <br> | ||
Line 26: | Line 26: | ||
<br> | <br> | ||
{| border="1" cellspacing="1" cellpadding="1" width="400" align="center" | {| border="1" cellspacing="1" cellpadding="1" width="400" align="center" siber__q92dpb7seovvtbh5__vptr="71036b0" sourceindex="33" | ||
|+ '''Table 1: 5%, 50% and 95% Ranks for a sample size of 6. ''' | |+ '''Table 1: 5%, 50% and 95% Ranks for a sample size of 6. ''' | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="71039e0" sourceindex="37" | ||
! bgcolor="#cccccc" valign="middle" scope="col" align="center" | Order Number | ! bgcolor="#cccccc" valign="middle" scope="col" align="center" siber__q92dpb7seovvtbh5__vptr="7103930" sourceindex="38" | Order Number | ||
! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 5% | ! bgcolor="#cccccc" valign="middle" scope="col" align="center" siber__q92dpb7seovvtbh5__vptr="7103100" sourceindex="39" | 5% | ||
! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 50% | ! bgcolor="#cccccc" valign="middle" scope="col" align="center" siber__q92dpb7seovvtbh5__vptr="7103760" sourceindex="40" | 50% | ||
! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 95% | ! bgcolor="#cccccc" valign="middle" scope="col" align="center" siber__q92dpb7seovvtbh5__vptr="71038b0" sourceindex="41" | 95% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103ad0" sourceindex="42" | ||
| valign="middle" align="center" | 1 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71038c0" sourceindex="43" | 1 | ||
| valign="middle" align="center" | 0.85% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103620" sourceindex="44" | 0.85% | ||
| valign="middle" align="center" | 10.91% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103a80" sourceindex="45" | 10.91% | ||
| valign="middle" align="center" | 39.30% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103a10" sourceindex="46" | 39.30% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="71035b0" sourceindex="47" | ||
| valign="middle" align="center" | 2 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103a00" sourceindex="48" | 2 | ||
| valign="middle" align="center" | 6.29% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103b00" sourceindex="49" | 6.29% | ||
| valign="middle" align="center" | 26.45% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103970" sourceindex="50" | 26.45% | ||
| valign="middle" align="center" | 58.18% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103d90" sourceindex="51" | 58.18% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103c50" sourceindex="52" | ||
| valign="middle" align="center" | 3 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103be0" sourceindex="53" | 3 | ||
| valign="middle" align="center" | 15.32% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103800" sourceindex="54" | 15.32% | ||
| valign="middle" align="center" | 42.14% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103d30" sourceindex="55" | 42.14% | ||
| valign="middle" align="center" | 72.87% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103b20" sourceindex="56" | 72.87% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103820" sourceindex="57" | ||
| valign="middle" align="center" | 4 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103de0" sourceindex="58" | 4 | ||
| valign="middle" align="center" | 27.13% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103c60" sourceindex="59" | 27.13% | ||
| valign="middle" align="center" | 57.86% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103a50" sourceindex="60" | 57.86% | ||
| valign="middle" align="center" | 84.68% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103b10" sourceindex="61" | 84.68% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103fd0" sourceindex="62" | ||
| valign="middle" align="center" | 5 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103e90" sourceindex="63" | 5 | ||
| valign="middle" align="center" | 41.82% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103c90" sourceindex="64" | 41.82% | ||
| valign="middle" align="center" | 73.55% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103a60" sourceindex="65" | 73.55% | ||
| valign="middle" align="center" | 93.71% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103f00" sourceindex="66" | 93.71% | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103ff0" sourceindex="67" | ||
| valign="middle" align="center" | 6 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103db0" sourceindex="68" | 6 | ||
| valign="middle" align="center" | 60.70% | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103fe0" sourceindex="69" | 60.70% | ||
| valign="middle" align="center" | | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103f30" sourceindex="70" | | ||
89.09% | 89.09% | ||
| valign="middle" align="center" | | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71034b0" sourceindex="72" | | ||
99.15% | 99.15% | ||
Line 71: | Line 71: | ||
<br> | <br> | ||
Furthermore, consider that for the units to be tested the underlying reliability model assumption is given by a Weibull distribution with <span class="texhtml">β = 2</span>, and <span class="texhtml">η = 100</span> hr. Then the median time to failure of the first unit on test can be determined by solving the Weibull reliability equation for t, at each probability, | Furthermore, consider that for the units to be tested the underlying reliability model assumption is given by a Weibull distribution with <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="7108080" sourceindex="77">β = 2</span>, and <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="7108010" sourceindex="78">η = 100</span> hr. Then the median time to failure of the first unit on test can be determined by solving the Weibull reliability equation for t, at each probability, | ||
or | or | ||
Line 87: | Line 87: | ||
<br> | <br> | ||
{| border="1" cellspacing="1" cellpadding="1" width="400" align="center" | {| border="1" cellspacing="1" cellpadding="1" width="400" align="center" siber__q92dpb7seovvtbh5__vptr="71083a0" sourceindex="89" | ||
|+ '''Table 2: Times corresponding to the 5%, 50% and 95% Ranks for a sample size of 6. and assuming Weibull distribution with <span class="texhtml">β = 2</span>, and <span class="texhtml">η = 100</span> hr.''' | |+ '''Table 2: Times corresponding to the 5%, 50% and 95% Ranks for a sample size of 6. and assuming Weibull distribution with <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="71082e0" sourceindex="92">β = 2</span>, and <span class="texhtml" siber__q92dpb7seovvtbh5__vptr="7108200" sourceindex="93">η = 100</span> hr.''' | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7108490" sourceindex="95" | ||
! bgcolor="#cccccc" scope="col" | Order Number | ! bgcolor="#cccccc" scope="col" siber__q92dpb7seovvtbh5__vptr="71081a0" sourceindex="96" | Order Number | ||
! bgcolor="#cccccc" scope="col" | Lowest Expected Time-to-failure (hr) | ! bgcolor="#cccccc" scope="col" siber__q92dpb7seovvtbh5__vptr="71082b0" sourceindex="97" | Lowest Expected Time-to-failure (hr) | ||
! bgcolor="#cccccc" scope="col" | Median Expected Time-to-failure (hr) | ! bgcolor="#cccccc" scope="col" siber__q92dpb7seovvtbh5__vptr="7108500" sourceindex="98" | Median Expected Time-to-failure (hr) | ||
! bgcolor="#cccccc" scope="col" | Highest Expected Time-to-failure (hr) | ! bgcolor="#cccccc" scope="col" siber__q92dpb7seovvtbh5__vptr="71085f0" sourceindex="99" | Highest Expected Time-to-failure (hr) | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7103d00" sourceindex="100" | ||
| valign="middle" align="center" | 1 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71085e0" sourceindex="101" | 1 | ||
| valign="middle" align="center" | 9.25 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108530" sourceindex="102" | 9.25 | ||
| valign="middle" align="center" | 33.99 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7103e10" sourceindex="103" | 33.99 | ||
| valign="middle" align="center" | 70.66 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108360" sourceindex="104" | 70.66 | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="71084b0" sourceindex="105" | ||
| valign="middle" align="center" | 2 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71086d0" sourceindex="106" | 2 | ||
| valign="middle" align="center" | 25.48 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71084c0" sourceindex="107" | 25.48 | ||
| valign="middle" align="center" | 55.42 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108220" sourceindex="108" | 55.42 | ||
| valign="middle" align="center" | 93.37 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108680" sourceindex="109" | 93.37 | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7108610" sourceindex="110" | ||
| valign="middle" align="center" | 3 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108170" sourceindex="111" | 3 | ||
| valign="middle" align="center" | 40.77 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108600" sourceindex="112" | 40.77 | ||
| valign="middle" align="center" | 73.97 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108700" sourceindex="113" | 73.97 | ||
| valign="middle" align="center" | 114.21 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108570" sourceindex="114" | 114.21 | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7108460" sourceindex="115" | ||
| valign="middle" align="center" | 4 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108760" sourceindex="116" | 4 | ||
| valign="middle" align="center" | 56.26 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108910" sourceindex="117" | 56.26 | ||
| valign="middle" align="center" | 92.96 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71089e0" sourceindex="118" | 92.96 | ||
| valign="middle" align="center" | 136.98 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71084e0" sourceindex="119" | 136.98 | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7108810" sourceindex="120" | ||
| valign="middle" align="center" | 5 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71089a0" sourceindex="121" | 5 | ||
| valign="middle" align="center" | 73.60 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108400" sourceindex="122" | 73.60 | ||
| valign="middle" align="center" | 115.33 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108730" sourceindex="123" | 115.33 | ||
| valign="middle" align="center" | 166.34 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71088e0" sourceindex="124" | 166.34 | ||
|- | |- siber__q92dpb7seovvtbh5__vptr="7108800" sourceindex="125" | ||
| valign="middle" align="center" | 6 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108bd0" sourceindex="126" | 6 | ||
| valign="middle" align="center" | | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108a90" sourceindex="127" | | ||
96.64 | 96.64 | ||
| valign="middle" align="center" | 148.84 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="71088b0" sourceindex="129" | 148.84 | ||
| valign="middle" align="center" | 218.32 | | valign="middle" align="center" siber__q92dpb7seovvtbh5__vptr="7108b00" sourceindex="130" | 218.32 | ||
|} | |} | ||
Revision as of 11:31, 10 March 2011
Expected Failure Time Plot
When a reliability life test is planned it is useful to visualize the expected outcome of the experiment. The Expected Failure Time Plot (introduced by ReliaSoft in Weibull++ 8)provides such a visual. Figure 1 below shows such a plot for h a sample size of 5 and an assumed Weibull distribution with β = 2 and η = 2,000 hrs and at a 90% confidence.
Fig. 1: Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with β = 2 and η = 2,000 hrs and at a 90% confidence. |
Interpreting the EFT Plot
Background & Calculations
Using the cumulative binomial, for a defined sample size, one can compute a rank (Median Rank if at 50% probability) for each ordered failure. As an example and for a sample size of 6 the 5%, 50% and 95% ranks would be as follows:
Order Number | 5% | 50% | 95% |
---|---|---|---|
1 | 0.85% | 10.91% | 39.30% |
2 | 6.29% | 26.45% | 58.18% |
3 | 15.32% | 42.14% | 72.87% |
4 | 27.13% | 57.86% | 84.68% |
5 | 41.82% | 73.55% | 93.71% |
6 | 60.70% |
89.09% |
99.15% |
Furthermore, consider that for the units to be tested the underlying reliability model assumption is given by a Weibull distribution with β = 2, and η = 100 hr. Then the median time to failure of the first unit on test can be determined by solving the Weibull reliability equation for t, at each probability,
or
R(t)=e^{\big({t \over \eta}\big)^\beta}
then for 0.85%,
1-0.0085=e^{\big({t \over 100}\big)^2}
and so forths as shown in the table below:
Order Number | Lowest Expected Time-to-failure (hr) | Median Expected Time-to-failure (hr) | Highest Expected Time-to-failure (hr) |
---|---|---|---|
1 | 9.25 | 33.99 | 70.66 |
2 | 25.48 | 55.42 | 93.37 |
3 | 40.77 | 73.97 | 114.21 |
4 | 56.26 | 92.96 | 136.98 |
5 | 73.60 | 115.33 | 166.34 |
6 |
96.64 |
148.84 | 218.32 |
<a _fcknotitle="true" href="Category:Weibull++">Weibull++</a> <a _fcknotitle="true" href="Category:Test_Design">Test_Design</a> <a _fcknotitle="true" href="Category:Special_Tools">Special_Tools</a>