|
|
| (26 intermediate revisions by 7 users not shown) |
| Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_Lognormal]] |
| {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| ! scope="col" |
| |
| {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
| |
| |-
| |
| | align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" |
| |
| The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.
| |
| |-
| |
| | align="center" valign="middle" |
| |
| The lognormal distribution is a two-parameter distribution with parameters <br>
| |
| <math>{\mu }'</math> and <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by:
| |
| | |
| ::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| <br> where,
| |
| <br><math>{T}'=\ln (T)</math><br>
| |
| the natural logarithm of the time-to-failure and
| |
| <br><math>\mu' \text{ and } \sigma_{T'}</math>\
| |
| are the mean and standard deviation of of the natural logarithms of the times-to-failure.
| |
| |-
| |
| | align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...]
| |
| |-
| |
| | align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_2P See Examples...]
| |
| |}
| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Lognormal&action=edit]]
| |