Weibull++ Standard Folio Data Gumbel: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(23 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_Gumbel]]
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
! scope="col" |
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
| align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior.  The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:
|-
| align="center" valign="middle" |
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life.  Eta represents the time by which 63.2% of the units fail.<br>
<br><math> \beta= </math> shape parameter (or slope).
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...]
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_2P See Examples...]
|}
 
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Gumbel&action=edit]]

Latest revision as of 21:07, 10 July 2015