ALTA ALTA Standard Folio Data PPH-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PHazards]]
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
! scope="col" |
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
| align="center" valign="middle" |{{Font|Standard Folio Data PPH-Exponential|11|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" |
A parametric form of the proportional hazards model can be obtained by assuming an underlying distribution. In ALTA PRO, the Weibull and exponential distributions are available.  In this section we will consider the Weibull distribution to formulate the parametric proportional hazards model.  In other words, it is assumed that the baseline failure rate in Eqn. (Prop. Failure Rate) is parametric and given by the Weibull distribution. In this case, the baseline failure rate is given by:
 
<br>
::<math>{{\lambda }_{0}}(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}</math>
 
<br>
The PH failure rate  then becomes:
 
<br>
::<math>\lambda (t,\underline{X})=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}\cdot {{e}^{\mathop{}_{j=1}^{m}{{a}_{j}}{{x}_{j}}}}</math>
 
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
 
|}
 
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_PPH-Exponential&action=edit]]

Latest revision as of 19:55, 8 July 2015