ALTA ALTA Standard Folio Data IPL-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PowerLaw]]
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|  valign="middle" |{{Font|Standard Folio Data IPL-Exponential|11|tahoma|bold|gray}}
|-
|  valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|  valign="middle" |
==IPL-Exponential==
The IPL-exponential model can be derived by setting  <math>m=L(V)</math>  in Eqn. (inverse), yielding the following IPL-exponential  <math>pdf</math> :
<br>
<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
<br>
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply  <math>\lambda =K{{V}^{n}},</math>  and is only a function of stress.
<br>
[[Image:ALTA8.4.gif|200px|IPL-exponential failure rate function at different stress levels.]]
|-
| valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
 
|}
 
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_IPL-Exponential&action=edit]]

Latest revision as of 19:52, 8 July 2015