ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:NoSkin}}
#REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Arrhenius]]
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
|-
|  valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
| valign="middle" |
The  <math>pdf</math>  of the 1-parameter exponential distribution is given by:
 
<br>
<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
<br>
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
<br>
<math>\lambda =\frac{1}{m}</math>
<br>
thus:
<br>
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
<br>
The Arrhenius-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (arrhenius).
<br>
Therefore:
<br>
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
<br>
Substituting for  <math>m</math>  in Eqn. (pdfexpm) yields a  <math>pdf</math>  that is both a function of time and stress or:
<br>
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
|-
|  valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
|}
 
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Arrhenius-Exponential&action=edit]]

Latest revision as of 23:15, 7 July 2015