|  |     | 
| Line 1: | Line 1: | 
|  | {{Banner Weibull Examples}}
 |  | [[Category: For Deletion]] | 
|  | <noinclude>[[Category:NTI]]{{Template:InProgress}}</noinclude>
 |  | 
|  |   |  | 
|  | This example uses time-to-failure data from a life test done on incandescent light bulbs. The observed times-to-failure are given in the next table.    
 |  | 
|  |   |  | 
|  | {| border="1" cellspacing="1" cellpadding="4" width="300" align="center"
 |  | 
|  | |+ Observed times-to-failure for ten bulbs in hours. 
 |  | 
|  | |-
 |  | 
|  | ! valign="middle" scope="col" align="center" | Order Number 
 |  | 
|  | ! valign="middle" scope="col" align="center" | Hours-to-failure
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 1 
 |  | 
|  | | valign="middle" align="center" | 361
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 2 
 |  | 
|  | | valign="middle" align="center" | 680
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 3 
 |  | 
|  | | valign="middle" align="center" |  721
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 4 
 |  | 
|  | | valign="middle" align="center" | 905
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 5 
 |  | 
|  | | valign="middle" align="center" | 1010
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 6 
 |  | 
|  | | valign="middle" align="center" |  1090
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 7 
 |  | 
|  | | valign="middle" align="center" | 1157
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 8 
 |  | 
|  | | valign="middle" align="center" | 1330
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 9 
 |  | 
|  | | valign="middle" align="center" | 1400
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 10 
 |  | 
|  | | valign="middle" align="center" | 1695
 |  | 
|  | |}
 |  | 
|  |   |  | 
|  | '''Do the following:''' 
 |  | 
|  |   |  | 
|  | #Plot the data on a Weibull probability plot and obtain the Weibull model parameters. 
 |  | 
|  | #Compute the B10 life of the bulbs.
 |  | 
|  |   |  | 
|  | <br>
 |  | 
|  |   |  | 
|  | The median ranks  for the  the <math>{{j}^{th}}</math> failure out of N units is obtained by solving the cumulative binomial equation for <math>Z</math> . This however requires numerical solution.  Tables of median ranks can be used in lieu of the solution. 
 |  | 
|  |   |  | 
|  |   |  | 
|  |   |  | 
|  | [http://www.weibull.com/GPaper/ranks2_6.htm Median Rank Tables]
 |  | 
|  |   |  | 
|  | <br>
 |  | 
|  |   |  | 
|  | <br>
 |  | 
|  |   |  | 
|  | represents the rank, or unreliability estimate, for the  failure[15; 16] in the following equation for the cumulative binomial: 
 |  | 
|  |   |  | 
|  | <math>P=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix}
 |  | 
|  |    N  \\
 |  | 
|  |    k  \\
 |  | 
|  | \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}}</math> 
 |  | 
|  |   |  | 
|  | <br>where <math>N</math> is the sample size and <math>j</math> the order number. The median rank is obtained by solving this equation for <math>Z</math> at <math>P=0.50,</math> 
 |  | 
|  |   |  | 
|  | <math>0.50=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix}
 |  | 
|  |    N  \\
 |  | 
|  |    k  \\
 |  | 
|  | \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}}</math>
 |  |