|  |     | 
| (8 intermediate revisions by 3 users not shown) | 
| Line 1: | Line 1: | 
|  | This example uses time-to-failure data from a life test done on incandescent light bulbs. The observed times-to-failure are given in the next table.    
 |  | [[Category: For Deletion]] | 
|  |   |  | 
|  | {| border="1" cellspacing="1" cellpadding="4" width="300" align="center"
 |  | 
|  | |+ Observed times-to-failure for ten bulbs in hours. 
 |  | 
|  | |-
 |  | 
|  | ! valign="middle" scope="col" align="center" | Order Number 
 |  | 
|  | ! valign="middle" scope="col" align="center" | Hours-to-failure
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 1 
 |  | 
|  | | valign="middle" align="center" | 361
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 2 
 |  | 
|  | | valign="middle" align="center" | 680
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 3 
 |  | 
|  | | valign="middle" align="center" |  721
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 4 
 |  | 
|  | | valign="middle" align="center" | 905
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 5 
 |  | 
|  | | valign="middle" align="center" | 1010
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 6 
 |  | 
|  | | valign="middle" align="center" |  1090
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 7 
 |  | 
|  | | valign="middle" align="center" | 1157
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 8 
 |  | 
|  | | valign="middle" align="center" | 1330
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 9 
 |  | 
|  | | valign="middle" align="center" | 1400
 |  | 
|  | |-
 |  | 
|  | | valign="middle" align="center" | 10 
 |  | 
|  | | valign="middle" align="center" | 1695
 |  | 
|  | |}
 |  | 
|  |   |  | 
|  | '''Do the following:'''
 |  | 
|  |   |  | 
|  | #Plot the data on a Weibull probability plot and obtain the Weibull model parameters. 
 |  | 
|  | #Compute the B10 life of the bulbs.
 |  | 
|  |   |  | 
|  |   |  | 
|  |   |  | 
|  | Median ranks are used to obtain an estimate of the unreliability, <math>Q({T_j})</math> for each failure. It is the value that the true probability of failure, <math>Q({{T}_{j}}),</math> should have at the <math>{{j}^{th}}</math> failure out of a sample of <math>N</math> units at a <math>50%</math> confidence level. This essentially means that this is our best estimate for the unreliability. Half of the time the true value will be greater than the 50% confidence estimate, the other half of the time the true value will be less than the estimate. This estimate is based on a solution of the binomial equation. The rank can be found for any percentage point, <math>P</math>, greater than zero and less than one, by solving the cumulative binomial equation for <math>Z</math> . This represents the rank, or unreliability estimate, for the <math>{{j}^{th}}</math> failure[15; 16] in the following equation for the cumulative binomial: 
 |  | 
|  |   |  | 
|  | <math>P=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix}
 |  | 
|  |    N  \\
 |  | 
|  |    k  \\
 |  | 
|  | \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}}</math> 
 |  | 
|  |   |  | 
|  | <br>where <math>N</math> is the sample size and <math>j</math> the order number. The median rank is obtained by solving this equation for <math>Z</math> at <math>P=0.50,</math> 
 |  | 
|  |   |  | 
|  | <math>0.50=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix}
 |  | 
|  |    N  \\
 |  | 
|  |    k  \\
 |  | 
|  | \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}}</math> 
 |  | 
|  |   |  | 
|  |   |  | 
|  |   |  | 
|  | [[Category:Weibull_Examples]] |  |