Arrhenius-Lognormal Model: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 97: | Line 97: | ||
{{Reference_Example_Heading3}} | {{Reference_Example_Heading3}} | ||
The following function is used for the Ln-Mean <math>\,\!\mu {}'</math> : | The following function is used for the Ln-Mean <math>\,\!\mu {}'</math>: | ||
::<math>\,\!\mu {}'=\beta _{0}+\beta _{1}\times \frac{11605}{T}</math> | ::<math>\,\!\mu {}'=\beta _{0}+\beta _{1}\times \frac{11605}{T}</math> | ||
where ''T'' is the temperature; <math>\,\!\beta _{1}</math> is the activation energy; <math>\,\!11605</math> is from reciprocal of the Boltzmann constant . This function can be written in the following way: | where ''T'' is the temperature; <math>\,\!\beta _{1}</math> is the activation energy; <math>\,\!11605</math> is from reciprocal of the Boltzmann constant . This function can be written in the following way: | ||
::<math>\,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}</math> | ::<math>\,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}</math> | ||
The above equation is the general log-linear model in ALTA. In ALTA, the coefficients are denoted by <math>\,\!\alpha _{i}</math> . | |||
The above equation is the general log-linear model in ALTA. In ALTA, the coefficients are denoted by <math>\,\!\alpha _{i}</math>. | |||
In fact, the above model also can be expressed using the traditional Arrhenius model: | In fact, the above model also can be expressed using the traditional Arrhenius model: | ||
::<math>\,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}=C\times e^{\frac{B}{T}}</math> | ::<math>\,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}=C\times e^{\frac{B}{T}}</math> | ||
In the book, the following results are provided: | In the book, the following results are provided: | ||
*ML estimations for the model parameters are: <math>\,\!\sigma =0.98</math> ,<math>\,\!\beta _{0}=-13.469</math> , <math>\,\!\beta _{1}=0.6279</math> (or <math>\,\!\alpha _{1}=7286.78</math>). | *ML estimations for the model parameters are: <math>\,\!\sigma =0.98</math> ,<math>\,\!\beta _{0}=-13.469</math> , <math>\,\!\beta _{1}=0.6279</math> (or <math>\,\!\alpha _{1}=7286.78</math>). | ||
*The 95% confidence interval for <math>\,\!\sigma</math> is [0.75, 1.28], for <math>\,\!\beta _{0}</math> is [-19.1, -7.8] and for <math>\,\!\beta _{1}</math> is [0.47, 0.79]. | *The 95% confidence interval for <math>\,\!\sigma</math> is [0.75, 1.28], for <math>\,\!\beta _{0}</math> is [-19.1, -7.8] and for <math>\,\!\beta _{1}</math> is [0.47, 0.79]. | ||
*The variance/covariance matrix for <math>\,\!\sigma</math> , <math>\,\!\beta _{0}</math> and <math>\,\!\beta _{1}</math> is | *The variance/covariance matrix for <math>\,\!\sigma</math> , <math>\,\!\beta _{0}</math> and <math>\,\!\beta _{1}</math> is | ||
::<math>\,\!\begin{bmatrix} | ::<math>\,\!\begin{bmatrix} | ||
Line 126: | Line 136: | ||
In terms of <math>\,\!\sigma</math> , <math>\,\!\alpha _{0}</math> and <math>\,\!\alpha _{1}</math>, the variance/covariance matrix is: | In terms of <math>\,\!\sigma</math> , <math>\,\!\alpha _{0}</math> and <math>\,\!\alpha _{1}</math>, the variance/covariance matrix is: | ||
:<math>\,\!\begin{bmatrix} | :<math>\,\!\begin{bmatrix} | ||
Line 134: | Line 145: | ||
{{Reference_Example_Heading4|ALTA}} | {{Reference_Example_Heading4|ALTA}} |
Revision as of 21:20, 10 June 2014
ALTA_Reference_Examples_Banner.png