|
|
Line 109: |
Line 109: |
| In fact, the above model also can be expressed using the traditional Arrhenius model: | | In fact, the above model also can be expressed using the traditional Arrhenius model: |
|
| |
|
| ::<math>\,\!</math> | | ::<math>\,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}=C\times e^{\frac{B}{T}}</math> |
| | |
| | |
|
| |
|
| {{Reference_Example_Heading4|ALTA}} | | {{Reference_Example_Heading4|ALTA}} |
Revision as of 18:37, 10 June 2014
ALTA_Reference_Examples_Banner.png
This example validates the calculation for the Arrhenius life stress relationship with a Lognormal distribution.
Reference Case
The data set is from Example 19.5 on page 498 in book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998.
Data
Device-A was tested under several different temperature settings.
Number in Group
|
State F/S
|
Time to State
|
Temperature (°F)
|
Subset ID
|
30 |
S |
5000 |
283.15 |
1
|
1 |
F |
1298 |
313.15 |
2
|
1 |
F |
1390 |
313.15 |
2
|
1 |
F |
3187 |
313.15 |
2
|
1 |
F |
3241 |
313.15 |
2
|
1 |
F |
3261 |
313.15 |
2
|
1 |
F |
3313 |
313.15 |
2
|
1 |
F |
4501 |
313.15 |
2
|
1 |
F |
4568 |
313.15 |
2
|
1 |
F |
4841 |
313.15 |
2
|
1 |
F |
4982 |
313.15 |
2
|
90 |
S |
5000 |
313.15 |
2
|
1 |
F |
581 |
333.15 |
3
|
1 |
F |
925 |
333.15 |
3
|
1 |
F |
1432 |
333.15 |
3
|
1 |
F |
1586 |
333.15 |
3
|
1 |
F |
2452 |
333.15 |
3
|
1 |
F |
2734 |
333.15 |
3
|
1 |
F |
2772 |
333.15 |
3
|
1 |
F |
4106 |
333.15 |
3
|
1 |
F |
4674 |
333.15 |
3
|
11 |
S |
5000 |
333.15 |
3
|
1 |
F |
283 |
353.15 |
4
|
1 |
F |
361 |
353.15 |
4
|
1 |
F |
515 |
353.15 |
4
|
1 |
F |
638 |
353.15 |
4
|
1 |
F |
854 |
353.15 |
4
|
1 |
F |
1024 |
353.15 |
4
|
1 |
F |
1030 |
353.15 |
4
|
1 |
F |
1045 |
353.15 |
4
|
1 |
F |
1767 |
353.15 |
4
|
1 |
F |
1777 |
353.15 |
4
|
1 |
F |
1856 |
353.15 |
4
|
1 |
F |
1951 |
353.15 |
4
|
1 |
F |
1964 |
353.15 |
4
|
1 |
F |
2884 |
353.15 |
4
|
1 |
S |
5000 |
353.15 |
4
|
Result
The following function is used for the Ln-Mean [math]\displaystyle{ \,\!\mu {}' }[/math] :
- [math]\displaystyle{ \,\!\mu {}'=\beta _{0}+\beta _{1}\times \frac{11605}{T} }[/math]
where T is the temperature; [math]\displaystyle{ \,\!\beta _{1} }[/math] is the activation energy; [math]\displaystyle{ \,\!11605 }[/math] is from reciprocal of the Boltzmann constant . This function can be written in the following way:
- [math]\displaystyle{ \,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}} }[/math]
The above equation is the general log-linear model in ALTA. In ALTA, the coefficients are denoted by [math]\displaystyle{ \,\!\alpha _{i} }[/math] .
In fact, the above model also can be expressed using the traditional Arrhenius model:
- [math]\displaystyle{ \,\!e^{{\mu }'}=e^{\alpha _{0}+\frac{\alpha _{1}}{T}}=C\times e^{\frac{B}{T}} }[/math]
Results in ALTA