Duane Confidence Bounds Example: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
<noinclude>{{Banner RGA Examples}} | <noinclude>{{Banner RGA Examples}} | ||
''This example appears in the [[Duane Model|Reliability Growth and Repairable System Analysis Reference | ''This example appears in the [[Duane Model|Reliability Growth and Repairable System Analysis Reference]]''. | ||
</noinclude> | </noinclude> | ||
Line 9: | Line 9: | ||
:<math>\hat{\alpha}=0.6133\,\!</math> | :<math>\hat{\alpha}=0.6133\,\!</math> | ||
Calculate the 90% confidence bounds for: | |||
#The parameters <math>\alpha\,\!</math> and <math>b\,\!</math>. | #The parameters <math>\alpha\,\!</math> and <math>b\,\!</math>. | ||
Line 17: | Line 17: | ||
'''Solution''' | '''Solution''' | ||
<ol> | |||
<li>Use the values of <math>\hat{b}\,\!</math> and <math>\hat{\alpha }\,\!</math> estimated from the least squares analysis. Then: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 53: | Line 54: | ||
{{b}_{U}}= & 2.1231 | {{b}_{U}}= & 2.1231 | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
</li> | |||
<li>The cumulative failure intensity is: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 84: | Line 85: | ||
The following figures show the graphs of the cumulative and instantaneous failure intensity. Both are plotted with confidence bounds. | The following figures show the graphs of the cumulative and instantaneous failure intensity. Both are plotted with confidence bounds. | ||
[[Image:rga4.7.png|center| | [[Image:rga4.7.png|center|450px]] | ||
[[Image:rga4.8.png|center|450px]] | |||
</li> | |||
<li>The cumulative MTBF is: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 119: | Line 119: | ||
The figure below displays the cumulative MTBF. | The figure below displays the cumulative MTBF. | ||
[[Image:rga4.9.png|center| | [[Image:rga4.9.png|center|450px]] | ||
The next figure displays the instantaneous MTBF. Both are plotted with confidence bounds. | The next figure displays the instantaneous MTBF. Both are plotted with confidence bounds. | ||
[[Image:rga4.10.png|center| | [[Image:rga4.10.png|center|450px]] | ||
</li> | |||
</ol> |
Revision as of 22:06, 2 June 2014
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.
This example appears in the Reliability Growth and Repairable System Analysis Reference.
Using the values of [math]\displaystyle{ \hat{b}\,\! }[/math] and [math]\displaystyle{ \hat{\alpha }\,\! }[/math] estimated from the least squares analysis in Least Squares Example 2:
- [math]\displaystyle{ \hat{b}=1.9453\,\! }[/math]
- [math]\displaystyle{ \hat{\alpha}=0.6133\,\! }[/math]
Calculate the 90% confidence bounds for:
- The parameters [math]\displaystyle{ \alpha\,\! }[/math] and [math]\displaystyle{ b\,\! }[/math].
- The cumulative and instantaneous failure intensity.
- The cumulative and instantaneous MTBF.
Solution
- Use the values of [math]\displaystyle{ \hat{b}\,\! }[/math] and [math]\displaystyle{ \hat{\alpha }\,\! }[/math] estimated from the least squares analysis. Then:
- [math]\displaystyle{ \begin{align} {{S}_{xx}}&=\left[ \underset{i=1}{\overset{n}{\mathop \sum }}\,{{(\ln {{t}_{i}})}^{2}} \right]-\frac{1}{n}{{\left( \underset{i=1}{\overset{n}{\mathop \sum }}\,\ln ({{t}_{i}}) \right)}^{2}} \\ & = 1400.9084-1301.4545 \\ & = 99.4539 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} SE(\hat{\alpha })= & \frac{\sigma }{\sqrt{{{S}_{xx}}}} \\ = & \frac{0.08428}{9.9727} \\ = & 0.008452 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} SE(\ln \hat{b})= & \sigma \cdot \sqrt{\frac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,{{(\ln {{T}_{i}})}^{2}}}{n\cdot {{S}_{xx}}}} \\ = & 0.065960 \end{align}\,\! }[/math]
- [math]\displaystyle{ C{{B}_{\alpha }}=\hat{\alpha }\pm {{t}_{n-2,\alpha /2}}SE(\hat{\alpha })\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{\alpha }_{L}}= & 0.602050 \\ {{\alpha }_{U}}= & 0.624417 \end{align}\,\! }[/math]
- [math]\displaystyle{ C{{B}_{b}}=\hat{b}{{e}^{\pm {{t}_{n-2,\alpha /2}}SE\left[ \ln (\hat{b}) \right]}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{b}_{L}}= & 1.7831 \\ {{b}_{U}}= & 2.1231 \end{align}\,\! }[/math]
- The cumulative failure intensity is:
- [math]\displaystyle{ \begin{align} {{\lambda }_{c}}= & \frac{1}{1.9453}\cdot {{22000}^{-0.6133}} \\ = & 0.00111689 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{\lambda }_{i}}= & \frac{1}{1.9453}\cdot (1-0.6133)\cdot {{22000}^{-0.6133}} \\ = & 0.00043198 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{[{{\lambda }_{c}}(t)]}_{L}}= & 0.00100254 \\ {{[{{\lambda }_{c}}(t)]}_{U}}= & 0.00124429 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & 0.00038775 \\ {{[{{\lambda }_{c}}(t)]}_{U}}= & 0.00048125 \end{align}\,\! }[/math]
- The cumulative MTBF is:
- [math]\displaystyle{ \begin{align} {{m}_{c}}(T)= & 1.9453\cdot {{22000}^{0.6133}} \\ = & 895.3395 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{m}_{i}}(T)= & \frac{1.9453}{1-0.6133}\cdot {{22000}^{0.6133}} \\ = & 2314.9369 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{m}_{c}}{{(t)}_{l}}= & 803.6695 \\ {{m}_{c}}{{(t)}_{u}}= & 997.4658 \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} {{m}_{i}}{{(t)}_{l}}= & 2077.9204 \\ {{m}_{i}}{{(t)}_{u}}= & 2578.9886 \end{align}\,\! }[/math]
The next figure displays the instantaneous MTBF. Both are plotted with confidence bounds.