Logistic Confidence Bounds Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '<noinclude>{{Banner RGA Examples}} ''This example appears in the Reliability Growth and Repairable System Analysis Reference book''. </noinclude> For the data given…')
 
No edit summary
Line 5: Line 5:
For the data given <noinclude>in the [[Reliability Data - Logistic Model]] example</noinclude><includeonly>above for the reliability data example</includeonly>, calculate the 2-sided 90% confidence bounds under the Logistic model for the following:
For the data given <noinclude>in the [[Reliability Data - Logistic Model]] example</noinclude><includeonly>above for the reliability data example</includeonly>, calculate the 2-sided 90% confidence bounds under the Logistic model for the following:


:1) The parameters <math>b\,\!</math> and <math>k\,\!</math>.
#The parameters <math>b\,\!</math> and <math>k\,\!</math>.
 
#Reliability at month 5.  
:2) Reliability at month 5.  




'''Solution'''
'''Solution'''
 
<ol>
:1) The values of <math>\hat{b}\,\!</math> and <math>\hat{k}\,\!</math> that were estimated from the least squares analysis in the reliability data example are:
<li>The values of <math>\hat{b}\,\!</math> and <math>\hat{k}\,\!</math> that were estimated from the least squares analysis in the reliability data example are:


::<math>\begin{align}
::<math>\begin{align}
Line 35: Line 34:
\end{align}\,\!</math>
\end{align}\,\!</math>


 
</li>
:2) First, calculate the reliability estimation at month 5:  
<li>First, calculate the reliability estimation at month 5:  
::<math>\begin{align}
::<math>\begin{align}
Line 44: Line 43:
:Thus, the 2-sided 90% confidence bounds on reliability at month 5 iare:  
:Thus, the 2-sided 90% confidence bounds on reliability at month 5 are:  


::<math>\begin{align}
::<math>\begin{align}
Line 55: Line 54:


[[Image:rga8.6.png|center|400px|Logistic Reliability vs. Time plot with 2-sided 90% confidence bounds.]]
[[Image:rga8.6.png|center|400px|Logistic Reliability vs. Time plot with 2-sided 90% confidence bounds.]]
</li>
</ol>

Revision as of 20:36, 15 May 2014

RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




This example appears in the Reliability Growth and Repairable System Analysis Reference book.


For the data given in the Reliability Data - Logistic Model example, calculate the 2-sided 90% confidence bounds under the Logistic model for the following:

  1. The parameters [math]\displaystyle{ b\,\! }[/math] and [math]\displaystyle{ k\,\! }[/math].
  2. Reliability at month 5.


Solution

  1. The values of [math]\displaystyle{ \hat{b}\,\! }[/math] and [math]\displaystyle{ \hat{k}\,\! }[/math] that were estimated from the least squares analysis in the reliability data example are:
    [math]\displaystyle{ \begin{align} \widehat{b}= & 3.3991 \\ \widehat{\alpha }= & 0.7398 \end{align}\,\! }[/math]
    Thus, the 2-sided 90% confidence bounds on parameter [math]\displaystyle{ b\,\! }[/math] are:
    [math]\displaystyle{ \begin{align} {{b}_{lower}}= & 2.5547 \\ {{b}_{upper}}= & 4.5225 \end{align}\,\! }[/math]
    The 2-sided 90% confidence bounds on parameter [math]\displaystyle{ k\,\! }[/math] are:
    [math]\displaystyle{ \begin{align} {{k}_{lower}}= & 0.6798 \\ {{k}_{upper}}= & 0.7997 \end{align}\,\! }[/math]
  2. First, calculate the reliability estimation at month 5:
    [math]\displaystyle{ \begin{align} {{R}_{5}}= & \frac{1}{1+b{{e}^{-5k}}} \\ = & 0.9224 \end{align}\,\! }[/math]
    Thus, the 2-sided 90% confidence bounds on reliability at month 5 are:
    [math]\displaystyle{ \begin{align} {{[{{R}_{5}}]}_{lower}}= & 0.8493 \\ {{[{{R}_{5}}]}_{upper}}= & 0.9955 \end{align}\,\! }[/math]
    The next figure shows a graph of the reliability plotted with 2-sided 90% confidence bounds.
    Logistic Reliability vs. Time plot with 2-sided 90% confidence bounds.