Crow-AMSAA Confidence Bounds: Difference between revisions
m (→Crow Bounds) |
No edit summary |
||
Line 5: | Line 5: | ||
==Individual (Non-Grouped) Data== | ==Individual (Non-Grouped) Data== | ||
=== | ===Beta===<!-- THIS SECTION HEADER IS LINKED FROM SEVERAL SECTIONS IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds====<!-- THIS SECTION HEADER IS LINKED TO: Crow-AMSAA (NHPP). IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK. --> | ====Fisher Matrix Bounds====<!-- THIS SECTION HEADER IS LINKED TO: Crow-AMSAA (NHPP). IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK. --> | ||
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well. | The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well. | ||
Line 70: | Line 70: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Lambda=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The parameter <math>\lambda \,\!</math> must be positive; thus, <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on: | The parameter <math>\lambda \,\!</math> must be positive; thus, <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on: | ||
Line 84: | Line 84: | ||
:<math>\hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\!</math> | :<math>\hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
Line 105: | Line 105: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Growth Rate=== | ||
Since the growth rate, <math>\alpha \,\!</math>, is equal to <math>1-\beta \,\!</math>, the confidence bounds for both the Fisher Matrix and Crow methods are: | Since the growth rate, <math>\alpha \,\!</math>, is equal to <math>1-\beta \,\!</math>, the confidence bounds for both the Fisher Matrix and Crow methods are: | ||
<br> | <br> | ||
Line 112: | Line 112: | ||
:<math>\alpha_U=1-\beta_L\,\!</math> | :<math>\alpha_U=1-\beta_L\,\!</math> | ||
<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | <math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. | ||
=== | ===Cumulative MTBF=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well. | The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well. | ||
Line 133: | Line 133: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 148: | Line 148: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Instantaneous MTBF=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is treated as being normally distributed as well. | The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is treated as being normally distributed as well. | ||
Line 167: | Line 167: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 219: | Line 219: | ||
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. | where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. | ||
=== | ===Cumulative Failure Intensity=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed. | The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed. | ||
Line 240: | Line 240: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 268: | Line 268: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Instantaneous Failure Intensity=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed. | The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed. | ||
Line 287: | Line 287: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 302: | Line 302: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Time Given Cumulative Failure Intensity=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 342: | Line 342: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Time Given Cumulative MTBF=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 359: | Line 359: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | :<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | ||
Line 371: | Line 371: | ||
Step 1: Calculate <math>{{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\!</math>. | Step 1: Calculate <math>{{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\!</math>. | ||
Step 2: Use the equations from the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_Failure_Intensity| | Step 2: Use the equations from the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_Failure_Intensity|Time Given Instantaneous Failure Intensity]] section to calculate the bounds. | ||
=== | ===Time Given Instantaneous MTBF=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 390: | Line 390: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math> | :<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math> | ||
Line 400: | Line 400: | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in the [[Crow-AMSAA_Confidence_Bounds# | Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. | ||
Step 2: Calculate the bounds on time as follows. | Step 2: Calculate the bounds on time as follows. | ||
Line 423: | Line 423: | ||
:<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math> | :<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math> | ||
=== | ===Time Given Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 440: | Line 440: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math> | :<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math> | ||
Line 451: | Line 451: | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
Step 1: Calculate <math>MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\!</math>. | Step 1: Calculate <math>MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\!</math>. | ||
Step 2: Use the equations from the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_MTBF| | Step 2: Use the equations from the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_MTBF|Time Given Instantaneous MTBF]] section to calculate the bounds on time given the instantaneous failure intensity. | ||
=== | ===Cumulative Number of Failures=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed. | The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed. | ||
Line 470: | Line 470: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Beta]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 488: | Line 488: | ||
==Grouped Data== | ==Grouped Data== | ||
==== | ====Beta (Grouped)====<!-- THIS SECTION HEADER IS LINKED TO: Crow-AMSAA (NHPP) and to several sections in this page. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK. --> | ||
=====Fisher Matrix Bounds===== | =====Fisher Matrix Bounds===== | ||
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well. | The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well. | ||
Line 531: | Line 531: | ||
Step 3: Calculate <math>c=\tfrac{1}{\sqrt{A}}\,\!</math> and <math>S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\!</math>. Thus an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\hat{\beta }\,\!</math> is: | Step 3: Calculate <math>c=\tfrac{1}{\sqrt{A}}\,\!</math> and <math>S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\!</math>. Thus an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\hat{\beta }\,\!</math> is: | ||
=== | ===Lambda (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on: | The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on: | ||
Line 545: | Line 545: | ||
:<math>\hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\!</math> | :<math>\hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
Line 564: | Line 564: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Growth Rate (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds are calculated from: | Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds are calculated from: | ||
Line 573: | Line 573: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | <math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. | ||
=== | ===Cumulative MTBF=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well. | The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well. | ||
Line 594: | Line 594: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 615: | Line 615: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Instantaneous MTBF (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed as well. | The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed as well. | ||
Line 634: | Line 634: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 651: | Line 651: | ||
:<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math> | :<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math> | ||
=== | ===Cumulative Failure Intensity (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed. | The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed. | ||
Line 672: | Line 672: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 687: | Line 687: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Instantaneous Failure Intensity (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed. | The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed. | ||
Line 704: | Line 704: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 719: | Line 719: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Time Given Cumulative MTBF (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 736: | Line 736: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | :<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | ||
Line 749: | Line 749: | ||
Step 2: Use equations the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Cumulative_Failure_Intensity_.28Grouped.29|Bounds on Time Given Cumulative Failure Intensity]] section to calculate the bounds. | Step 2: Use equations the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Cumulative_Failure_Intensity_.28Grouped.29|Bounds on Time Given Cumulative Failure Intensity]] section to calculate the bounds. | ||
=== | ===Time Given Instantaneous MTBF (Grouped)===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 766: | Line 766: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\!</math> | :<math>\hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\!</math> | ||
Line 780: | Line 780: | ||
:<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math> | :<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math> | ||
Step 2: Use equations in the [[Crow-AMSAA_Confidence_Bounds# | Step 2: Use equations in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Time_Given_Instantaneous_MTBF_.28Grouped.29|Time Given Instantaneous MTBF]] section to calculate the time given the instantaneous MTBF. | ||
=== | ===Time Given Cumulative Failure Intensity (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 799: | Line 799: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 822: | Line 822: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=== | ===Time Given Instantaneous Failure Intensity (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed. | ||
Line 839: | Line 839: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math> | :<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math> | ||
Line 850: | Line 850: | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
Step 1: Calculate <math>MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\!</math>. | Step 1: Calculate <math>MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\!</math>. | ||
Step 2: Follow the same process as in the [[Crow-AMSAA_Confidence_Bounds# | Step 2: Follow the same process as in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Time_Given_Instantaneous_MTBF_.28Grouped.29|Time Given Instantaneous MTBF]] section to calculate the bounds on time given the instantaneous failure intensity. | ||
=== | ===Cumulative Number of Failures (Grouped)=== | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed. | The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed. | ||
Line 869: | Line 869: | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29| | The variance calculation is the same as given above in the confidence bounds on [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Beta (Grouped)]] section. And: | ||
:<math>\begin{align} | :<math>\begin{align} |
Revision as of 21:38, 6 February 2014
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow-AMSAA (NHPP) model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow.
Note regarding the Crow Bounds calculations: The equations that involve the use of the Chi-Squared distribution assume left-tail probability.
Individual (Non-Grouped) Data
Beta
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds are given as:
- [math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \alpha \,\! }[/math] in [math]\displaystyle{ {{z}_{\alpha }}\,\! }[/math] is different ( [math]\displaystyle{ \alpha /2\,\! }[/math], [math]\displaystyle{ \alpha \,\! }[/math] ) according to a 2-sided confidence interval or a 1-sided confidence interval, and variances can be calculated using the Fisher Matrix.
- [math]\displaystyle{ \left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} \\ \end{matrix} \right]_{\beta =\hat{\beta },\lambda =\hat{\lambda }}^{-1}=\left[ \begin{matrix} Var(\hat{\lambda }) & Cov(\hat{\beta },\hat{\lambda }) \\ Cov(\hat{\beta },\hat{\lambda }) & Var(\hat{\beta }) \\ \end{matrix} \right]\,\! }[/math]
[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function:
- [math]\displaystyle{ \Lambda =N\ln \lambda +N\ln \beta -\lambda {{T}^{\beta }}+(\beta -1)\underset{i=1}{\overset{N}{\mathop \sum }}\,\ln {{T}_{i}}\,\! }[/math]
And:
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{N}{{{\lambda }^{2}}}\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{N}{{{\beta }^{2}}}-\lambda {{T}^{\beta }}{{(\ln T)}^{2}}\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-{{T}^{\beta }}\ln T\,\! }[/math]
Crow Bounds
Time Terminated Data
For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \beta \,\! }[/math], calculate:
- [math]\displaystyle{ \begin{align} & {{D}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \\ & {{D}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \end{align}\,\! }[/math]
The confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\ {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta } \end{align}\,\! }[/math]
Failure Terminated Data
For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \beta \,\! }[/math], calculate:
- [math]\displaystyle{ \begin{align} {{D}_{L}}= & \frac{N\cdot \chi _{\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \\ {{D}_{U}}= & \frac{N\cdot \chi _{1-\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \end{align}\,\! }[/math]
Thus, the confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\ {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta } \end{align}\,\! }[/math]
Lambda
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive; thus, [math]\displaystyle{ \ln \lambda \,\! }[/math] is treated as being normally distributed as well. These bounds are based on:
- [math]\displaystyle{ \frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:
- [math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]
where:
- [math]\displaystyle{ \hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section.
Crow Bounds
Time Terminated Data
For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2{{T}^{{\hat{\beta }}}}} \end{align}\,\! }[/math]
Failure Terminated Data
For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \end{align}\,\! }[/math]
Growth Rate
Since the growth rate, [math]\displaystyle{ \alpha \,\! }[/math], is equal to [math]\displaystyle{ 1-\beta \,\! }[/math], the confidence bounds for both the Fisher Matrix and Crow methods are:
- [math]\displaystyle{ \alpha_L=1-\beta_U\,\! }[/math]
- [math]\displaystyle{ \alpha_U=1-\beta_L\,\! }[/math]
[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the confidence bounds on Beta section.
Cumulative MTBF
Fisher Matrix Bounds
The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
For the 2-sided confidence bounds on the cumulative MTBF, first calculate the confidence bounds on the cumulative failure intensity. Then:
- [math]\displaystyle{ \begin{align} & {{CMTB{{F}}}_{L}}= & \frac{1}{CFI{{(t)}_{U}}} \\ & {{CMTB{{F}}}_{U}}= & \frac{1}{CFI{{(t)}_{L}}} \end{align}\,\! }[/math]
Instantaneous MTBF
Fisher Matrix Bounds
The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }). \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
Consider the following equation:
- [math]\displaystyle{ G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\! }[/math]
Find the values [math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ c\,\! }[/math] to [math]\displaystyle{ G({{n}^{2}}/c|n)=\xi \,\! }[/math] for [math]\displaystyle{ \xi =\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ \xi =1-\tfrac{\alpha }{2}\,\! }[/math], respectively. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Time Terminated Data
Consider the following equation where [math]\displaystyle{ {{I}_{1}}(.)\,\! }[/math] is the modified Bessel function of order one:
- [math]\displaystyle{ H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\! }[/math]
Find the values [math]\displaystyle{ {{\Pi }_{1}}\,\! }[/math] and [math]\displaystyle{ {{\Pi }_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ x\,\! }[/math] to [math]\displaystyle{ H(x|k)=\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ H(x|k)=1-\tfrac{\alpha }{2}\,\! }[/math] in the cases corresponding to the lower and upper bounds, respectively. Calculate [math]\displaystyle{ \Pi =\tfrac{4{{n}^{2}}}{{{x}^{2}}}\,\! }[/math] for each case. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Cumulative Failure Intensity
Fisher Matrix Bounds
The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]
and:
- [math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow bounds on the cumulative failure intensity are calculated by first estimating:
- [math]\displaystyle{ N=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\! }[/math]
Time Terminated
- [math]\displaystyle{ \begin{align} CFI{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ CFI{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t} \end{align}\,\! }[/math]
Failure Terminated
- [math]\displaystyle{ \begin{align} CFI{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ \end{align}\,\! }[/math]
- [math]\displaystyle{ \begin{align} CFI{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \end{align}\,\! }[/math]
Instantaneous Failure Intensity
Fisher Matrix Bounds
The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\text{ }\tilde{\ }\text{ }N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\! }[/math]
where
- [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} {{\lambda }_{i}}{{(t)}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{\lambda }_{i}}{{(t)}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]
Time Given Cumulative Failure Intensity
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
- where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the Bounds on Beta section and:
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time, given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Time Given Cumulative MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \text{ }\cdot \text{ }{{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ {{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\! }[/math].
Step 2: Use the equations from the confidence bounds on Time Given Instantaneous Failure Intensity section to calculate the bounds.
Time Given Instantaneous MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in the confidence bounds on Beta section. Step 2: Calculate the bounds on time as follows.
Failure Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\! }[/math]
So the lower an upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Time Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\! }[/math]
So the lower and upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Time Given Instantaneous Failure Intensity
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\! }[/math]. Step 2: Use the equations from the confidence bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.
Cumulative Number of Failures
Fisher Matrix Bounds
The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln N(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
- [math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\ \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}} \end{align}\,\! }[/math]
Crow Bounds
The Crow cumulative number of failure confidence bounds are:
- [math]\displaystyle{ \begin{align} {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}} \end{align}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained from the Crow instantaneous failure intensity confidence bounds equations given above.
Grouped Data
Beta (Grouped)
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds are given as:
- [math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \hat{\beta }\,\! }[/math] can be obtained by [math]\displaystyle{ \underset{i=1}{\overset{K}{\mathop{\sum }}}\,{{n}_{i}}\left( \tfrac{T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln \,{{T}_{i-1}}}{T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}}}-\ln {{T}_{k}} \right)=0\,\! }[/math].
All variance can be calculated using the Fisher Matrix:
- [math]\displaystyle{ \left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} \\ \end{matrix} \right]_{\beta =\hat{\beta },\lambda =\hat{\lambda }}^{-1}=\left[ \begin{matrix} Var(\hat{\lambda }) & Cov(\hat{\beta },\hat{\lambda }) \\ Cov(\hat{\beta },\hat{\lambda }) & Var(\hat{\beta }) \\ \end{matrix} \right]\,\! }[/math]
[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function where ln [math]\displaystyle{ ^{2}T={{\left( \ln T \right)}^{2}}\,\! }[/math] and:
- [math]\displaystyle{ \Lambda =\underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ {{n}_{i}}\ln (\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-\ln {{n}_{i}}! \right]\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}= & -\frac{n}{{{\lambda }^{2}}} \\ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}= & \underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ \begin{matrix} {{n}_{i}}\left( \tfrac{(T_{i}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i}}-T_{i-1}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i-1}})(T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}})-{{\left( T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln {{T}_{i-1}} \right)}^{2}}}{{{(T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}})}^{2}}} \right) \\ -\left( \lambda T_{i}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i}}-\lambda T_{i-1}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i-1}} \right) \\ \end{matrix} \right] \\ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }= & -T_{K}^{\beta }\ln {{T}_{k}} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ P(i)=\tfrac{{{T}_{i}}}{{{T}_{K}}},\,\,i=1,2,\ldots ,K\,\! }[/math]. Step 2: Calculate:
- [math]\displaystyle{ A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{[P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}}]}^{2}}}{[P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}}]}\,\! }[/math]
Step 3: Calculate [math]\displaystyle{ c=\tfrac{1}{\sqrt{A}}\,\! }[/math] and [math]\displaystyle{ S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\! }[/math]. Thus an approximate 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \hat{\beta }\,\! }[/math] is:
Lambda (Grouped)
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda \,\! }[/math] is treated as being normally distributed as well. These bounds are based on:
- [math]\displaystyle{ \frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:
- [math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]
where:
- [math]\displaystyle{ \hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section.
Crow Bounds
Time Terminated Data For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot T_{k}^{\beta }} \end{align}\,\! }[/math]
Failure Terminated Data For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \end{align}\,\! }[/math]
Growth Rate (Grouped)
Fisher Matrix Bounds
Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math], the confidence bounds are calculated from:
- [math]\displaystyle{ \begin{align} G\operatorname{row}th\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ G\operatorname{row}th\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} \end{align}\,\! }[/math]
[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the confidence bounds on Beta (Grouped) section.
Cumulative MTBF
Fisher Matrix Bounds
The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
Calculate the Crow cumulative failure intensity confidence bounds:
- [math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
- [math]\displaystyle{ C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
Then:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]
Instantaneous MTBF (Grouped)
Fisher Matrix Bounds
The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed as well.
- [math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ P(i)=\tfrac{{{T}_{i}}}{{{T}_{K}}},\,\,i=1,2,\ldots ,K\,\! }[/math]. Step 2: Calculate:
- [math]\displaystyle{ A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{\left[ P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}} \right]}^{2}}}{\left[ P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}} \right]}\,\! }[/math]
Step 3: Calculate [math]\displaystyle{ D=\sqrt{\tfrac{1}{A}+1}\,\! }[/math] and [math]\displaystyle{ W=\tfrac{({{z}_{1-\alpha /2}})\cdot D}{\sqrt{N}}\,\! }[/math]. Thus, an approximate 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ {{\hat{m}}_{i}}(t)\,\! }[/math] is:
- [math]\displaystyle{ MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\! }[/math]
Cumulative Failure Intensity (Grouped)
Fisher Matrix Bounds
The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]
and:
- [math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow cumulative failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t} \end{align}\,\! }[/math]
Instantaneous Failure Intensity (Grouped)
Fisher Matrix Bounds
The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\tilde{\ }N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math] and:
- [math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]
Time Given Cumulative MTBF (Grouped)
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ {{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\! }[/math]. Step 2: Use equations the Bounds on Time Given Cumulative Failure Intensity section to calculate the bounds.
Time Given Instantaneous MTBF (Grouped)
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot \text{ }{{m}_{i}}(T) \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot {{m}_{i}}(T))+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot \text{ }{{m}_{i}}(T))}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate the confidence bounds on the instantaneous MTBF:
- [math]\displaystyle{ MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\! }[/math]
Step 2: Use equations in the confidence bounds on Time Given Instantaneous MTBF section to calculate the time given the instantaneous MTBF.
Time Given Cumulative Failure Intensity (Grouped)
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Time Given Instantaneous Failure Intensity (Grouped)
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
Confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\! }[/math]. Step 2: Follow the same process as in the confidence bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.
Cumulative Number of Failures (Grouped)
Fisher Matrix Bounds
The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln N(t)\,\! }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
- [math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as given above in the confidence bounds on Beta (Grouped) section. And:
- [math]\displaystyle{ \begin{align} \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\ \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}} \end{align}\,\! }[/math]
Crow Bounds
The Crow confidence bounds on cumulative number of failures are:
- [math]\displaystyle{ \begin{align} {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}} \end{align}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained from the equations given above for Crow instantaneous failure intensity confidence bounds with grouped data.