Crow-AMSAA Confidence Bounds: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 9: Line 9:
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well.   
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well.   


::<math>\frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds are given as:  
The approximate confidence bounds are given as:  


::<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math>
:<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math>


<math>\alpha \,\!</math> in <math>{{z}_{\alpha }}\,\!</math> is different ( <math>\alpha /2\,\!</math>, <math>\alpha \,\!</math> ) according to a 2-sided confidence interval or a 1-sided confidence interval, and variances can be calculated using the Fisher Matrix.  
<math>\alpha \,\!</math> in <math>{{z}_{\alpha }}\,\!</math> is different ( <math>\alpha /2\,\!</math>, <math>\alpha \,\!</math> ) according to a 2-sided confidence interval or a 1-sided confidence interval, and variances can be calculated using the Fisher Matrix.  


::<math>\left[ \begin{matrix}
:<math>\left[ \begin{matrix}
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}  \\
Line 29: Line 29:
::<math>\Lambda =N\ln \lambda +N\ln \beta -\lambda {{T}^{\beta }}+(\beta -1)\underset{i=1}{\overset{N}{\mathop \sum }}\,\ln {{T}_{i}}\,\!</math>
::<math>\Lambda =N\ln \lambda +N\ln \beta -\lambda {{T}^{\beta }}+(\beta -1)\underset{i=1}{\overset{N}{\mathop \sum }}\,\ln {{T}_{i}}\,\!</math>


::<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{N}{{{\lambda }^{2}}}\,\!</math>
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{N}{{{\lambda }^{2}}}\,\!</math>


:and:  
and:  


::<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{N}{{{\beta }^{2}}}-\lambda {{T}^{\beta }}{{(\ln T)}^{2}}\,\!</math>
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{N}{{{\beta }^{2}}}-\lambda {{T}^{\beta }}{{(\ln T)}^{2}}\,\!</math>


:also:  
also:  


::<math>\frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-{{T}^{\beta }}\ln T\,\!</math>
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-{{T}^{\beta }}\ln T\,\!</math>


====Crow Bounds====
====Crow Bounds====
Line 44: Line 44:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\beta \,\!</math>, calculate:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\beta \,\!</math>, calculate:


::<math>\begin{align}
:<math>\begin{align}
   & {{D}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \\  
   & {{D}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \\  
  & {{D}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2(N-1)}   
  & {{D}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2(N-1)}   
Line 51: Line 51:
The fractiles can be found in the tables of the <math>{{\chi }^{2}}\,\!</math> distribution. Thus the confidence bounds on <math>\beta \,\!</math> are:
The fractiles can be found in the tables of the <math>{{\chi }^{2}}\,\!</math> distribution. Thus the confidence bounds on <math>\beta \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\  
   {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\  
   {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta }   
   {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta }   
\end{align}\,\!</math>
\end{align}\,\!</math>


'''Failure Terminated Data'''
'''Failure Terminated Data'''
Line 61: Line 60:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\beta \,\!</math>, calculate:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\beta \,\!</math>, calculate:


::<math>\begin{align}
:<math>\begin{align}
   {{D}_{L}}= & \frac{N\cdot \chi _{\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \\  
   {{D}_{L}}= & \frac{N\cdot \chi _{\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \\  
   {{D}_{U}}= & \frac{N\cdot \chi _{1-\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)}   
   {{D}_{U}}= & \frac{N\cdot \chi _{1-\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)}   
Line 68: Line 67:
Thus, the confidence bounds on <math>\beta \,\!</math> are:
Thus, the confidence bounds on <math>\beta \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\  
   {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\  
   {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta }   
   {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta }   
Line 77: Line 76:
The parameter <math>\lambda \,\!</math> must be positive; thus, <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on:  
The parameter <math>\lambda \,\!</math> must be positive; thus, <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on:  


::<math>\frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on <math>\lambda \,\!</math> are given as:  
The approximate confidence bounds on <math>\lambda \,\!</math> are given as:  


::<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math>
:<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math>


:where:  
where:  


::<math>\hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\!</math>
:<math>\hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\!</math>


The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section.
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section.
Line 94: Line 93:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\  
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\  
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2{{T}^{{\hat{\beta }}}}}   
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2{{T}^{{\hat{\beta }}}}}   
Line 100: Line 99:


The fractiles can be found in the tables of the <math>{{\chi }^{2}}\,\!</math> distribution.
The fractiles can be found in the tables of the <math>{{\chi }^{2}}\,\!</math> distribution.


'''Failure Terminated Data'''
'''Failure Terminated Data'''
Line 106: Line 104:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\  
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\  
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}}   
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}}   
Line 114: Line 112:
Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds for both the Fisher Matrix and Crow methods are:
Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds for both the Fisher Matrix and Crow methods are:
<br>
<br>
::<math>G\text{row}th Rate_L=1-\beta_U\,\!</math>
:<math>G\text{row}th Rate_L=1-\beta_U\,\!</math>
::<math>G\text{row}th Rate_U=1-\beta_L\,\!</math>
:<math>G\text{row}th Rate_U=1-\beta_L\,\!</math>


<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section.   
<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section.   
Line 123: Line 121:
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well.
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well.


::<math>\frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the cumulative MTBF are then estimated from:
The approximate confidence bounds on the cumulative MTBF are then estimated from:


::<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\!</math>
:<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\!</math>
:<math>{{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,   
   & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,   
Line 140: Line 138:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}}   
   \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}}   
Line 148: Line 146:
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:  
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:  


::<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>
:<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>


'''Time Terminated Data'''
'''Time Terminated Data'''
::<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t}\,\!</math>
:<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t}\,\!</math>


'''Failure Terminated Data'''
'''Failure Terminated Data'''
::<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>
:<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>


Then:
Then:


::<math>\begin{align}
:<math>\begin{align}
   & {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\  
   & {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\  
  & {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}}   
  & {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}}   
Line 167: Line 165:
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is treated as being normally distributed as well.  
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is treated as being normally distributed as well.  


::<math>\frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the instantaneous MTBF are then estimated from:  
The approximate confidence bounds on the instantaneous MTBF are then estimated from:  


::<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\!</math>
:<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math>
:<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }).   
   & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }).   
Line 184: Line 182:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}}   
   \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}}   
Line 190: Line 188:


====Crow Bounds====
====Crow Bounds====
'''Failure Terminated Data'''
'''Failure Terminated Data'''


Consider the following equation:  
Consider the following equation:  


::<math>G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\!</math>
:<math>G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\!</math>


Find the values <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> by finding the solution <math>c\,\!</math> to <math>G({{n}^{2}}/c|n)=\xi \,\!</math> for <math>\xi =\tfrac{\alpha }{2}\,\!</math> and <math>\xi =1-\tfrac{\alpha }{2}\,\!</math>, respectively. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>, then the upper and lower confidence bounds are:
Find the values <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> by finding the solution <math>c\,\!</math> to <math>G({{n}^{2}}/c|n)=\xi \,\!</math> for <math>\xi =\tfrac{\alpha }{2}\,\!</math> and <math>\xi =1-\tfrac{\alpha }{2}\,\!</math>, respectively. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>, then the upper and lower confidence bounds are:


::<math>\begin{align}
:<math>\begin{align}
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\  
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\  
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}}   
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}}   
Line 206: Line 203:
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>, then the upper and lower confidence bounds are:
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>, then the upper and lower confidence bounds are:


::<math>\begin{align}
:<math>\begin{align}
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\  
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\  
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}}   
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}}   
Line 217: Line 214:
Consider the following equation where <math>{{I}_{1}}(.)\,\!</math> is the modified Bessel function of order one:  
Consider the following equation where <math>{{I}_{1}}(.)\,\!</math> is the modified Bessel function of order one:  


::<math>H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\!</math>
:<math>H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\!</math>


Find the values <math>{{\Pi }_{1}}\,\!</math> and <math>{{\Pi }_{2}}\,\!</math> by finding the solution <math>x\,\!</math> to <math>H(x|k)=\tfrac{\alpha }{2}\,\!</math> and <math>H(x|k)=1-\tfrac{\alpha }{2}\,\!</math> in the cases corresponding to the lower and upper bounds, respectively. Calculate <math>\Pi =\tfrac{4{{n}^{2}}}{{{x}^{2}}}\,\!</math> for each case. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>, then the upper and lower confidence bounds are:
Find the values <math>{{\Pi }_{1}}\,\!</math> and <math>{{\Pi }_{2}}\,\!</math> by finding the solution <math>x\,\!</math> to <math>H(x|k)=\tfrac{\alpha }{2}\,\!</math> and <math>H(x|k)=1-\tfrac{\alpha }{2}\,\!</math> in the cases corresponding to the lower and upper bounds, respectively. Calculate <math>\Pi =\tfrac{4{{n}^{2}}}{{{x}^{2}}}\,\!</math> for each case. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>, then the upper and lower confidence bounds are:
Line 228: Line 225:
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>, then the upper and lower confidence bounds are:
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>, then the upper and lower confidence bounds are:


::<math>\begin{align}
:<math>\begin{align}
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\  
   {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\  
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}}   
   {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}}   
Line 239: Line 236:
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed.  
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the cumulative failure intensity are then estimated from:  
The approximate confidence bounds on the cumulative failure intensity are then estimated from:  


::<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\!</math>
:<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math>
:<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math>


:and:  
and:  


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 258: Line 255:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}}   
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}}   
Line 266: Line 263:
The Crow lower cumulative failure intensity confidence bound is given by:
The Crow lower cumulative failure intensity confidence bound is given by:


::<math>\begin{align}
:<math>\begin{align}
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
\end{align}\,\!</math>
\end{align}\,\!</math>
Line 272: Line 269:
'''Time Terminated'''
'''Time Terminated'''


::<math>\begin{align}
:<math>\begin{align}
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t}   
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t}   
Line 279: Line 276:
'''Failure Terminated'''
'''Failure Terminated'''


::<math>\begin{align}
:<math>\begin{align}
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}   
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}   
\end{align}\,\!</math>
\end{align}\,\!</math>


===Bounds on Instantaneous Failure Intensity===
===Bounds on Instantaneous Failure Intensity===
Line 288: Line 284:
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed.  
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\text{ }\tilde{\ }\text{ }N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\text{ }\tilde{\ }\text{ }N(0,1)\,\!</math>


The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  


::<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\!</math>
:<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\!</math>


:where
where


::<math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math>  
:<math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math>  


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 305: Line 301:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}}   
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}}   
Line 313: Line 309:
The Crow instantaneous failure intensity confidence bounds are given as:  
The Crow instantaneous failure intensity confidence bounds are given as:  


::<math>\begin{align}
:<math>\begin{align}
   {{\lambda }_{i}}{{(t)}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\  
   {{\lambda }_{i}}{{(t)}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\  
   {{\lambda }_{i}}{{(t)}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}}   
   {{\lambda }_{i}}{{(t)}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}}   
Line 326: Line 322:
Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
:where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 337: Line 333:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
   
   
::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
Line 345: Line 341:
Step 1: Calculate:
Step 1: Calculate:


::<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math>
:<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math>


Step 2: Estimate the number of failures:
Step 2: Estimate the number of failures:
Line 353: Line 349:
Step 3: Obtain the confidence bounds on time, given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations:  
Step 3: Obtain the confidence bounds on time, given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations:  


::<math>\begin{align}
:<math>\begin{align}
   {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\  
   {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\  
   {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)}   
   {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)}   
Line 362: Line 358:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 377: Line 373:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  


::<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \text{ }\cdot \text{ }{{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \text{ }\cdot \text{ }{{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
Line 393: Line 389:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 408: Line 404:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:


::<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
Line 419: Line 415:
Step 2: Calculate the bounds on time as follows.
Step 2: Calculate the bounds on time as follows.


====Failure Terminated Data====
'''Failure Terminated Data'''


::<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\!</math>


So the lower an upper bounds on time are:
So the lower an upper bounds on time are:


::<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\!</math>
:<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\!</math>


::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\!</math>
:<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\!</math>


'''Time Terminated Data'''
'''Time Terminated Data'''


::<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\!</math>


So the lower and upper bounds on time are:
So the lower and upper bounds on time are:


::<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\!</math>
:<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\!</math>


::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math>
:<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math>


===Bounds on Time Given Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
===Bounds on Time Given Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
Line 443: Line 439:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 458: Line 454:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:   
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:   


::<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math>
:<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
Line 473: Line 469:
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed.   
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed.   


::<math>\frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


::<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math>
:<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math>


:where:  
where:  


::<math>\hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\!</math>
:<math>\hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
   & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
Line 488: Line 484:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta|Bounds on Beta]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\  
   \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\  
   \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}}   
   \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}}   
Line 494: Line 490:


====Crow Bounds====
====Crow Bounds====
The Crow cumulative number of failure confidence bounds are:  
The Crow cumulative number of failure confidence bounds are:  


::<math>\begin{align}
:<math>\begin{align}
   {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\  
   {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\  
   {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}}   
   {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}}   
Line 509: Line 504:
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well.   
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is treated as being normally distributed as well.   


::<math>\frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds are given as:  
The approximate confidence bounds are given as:  


::<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math>
:<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math>


::<math>\hat{\beta }\,\!</math> can be obtained by <math>\underset{i=1}{\overset{K}{\mathop{\sum }}}\,{{n}_{i}}\left( \tfrac{T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln \,{{T}_{i-1}}}{T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}}}-\ln {{T}_{k}} \right)=0\,\!</math>.
:<math>\hat{\beta }\,\!</math> can be obtained by <math>\underset{i=1}{\overset{K}{\mathop{\sum }}}\,{{n}_{i}}\left( \tfrac{T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln \,{{T}_{i-1}}}{T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}}}-\ln {{T}_{k}} \right)=0\,\!</math>.


All variance can be calculated using the Fisher Matrix:  
All variance can be calculated using the Fisher Matrix:  


::<math>\left[ \begin{matrix}
:<math>\left[ \begin{matrix}
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}  \\
   -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}  \\
Line 529: Line 524:
<math>\Lambda \,\!</math> is the natural log-likelihood function where ln <math>^{2}T={{\left( \ln T \right)}^{2}}\,\!</math> and:
<math>\Lambda \,\!</math> is the natural log-likelihood function where ln <math>^{2}T={{\left( \ln T \right)}^{2}}\,\!</math> and:


::<math>\Lambda =\underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ {{n}_{i}}\ln (\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-\ln {{n}_{i}}! \right]\,\!</math>
:<math>\Lambda =\underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ {{n}_{i}}\ln (\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-\ln {{n}_{i}}! \right]\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}= & -\frac{n}{{{\lambda }^{2}}} \\  
   \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}= & -\frac{n}{{{\lambda }^{2}}} \\  
   \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}= & \underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ \begin{matrix}
   \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}= & \underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ \begin{matrix}
Line 544: Line 539:
Step 2: Calculate:  
Step 2: Calculate:  


::<math>A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{[P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}}]}^{2}}}{[P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}}]}\,\!</math>
:<math>A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{[P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}}]}^{2}}}{[P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}}]}\,\!</math>


Step 3: Calculate <math>c=\tfrac{1}{\sqrt{A}}\,\!</math> and <math>S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\!</math>. Thus an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\hat{\beta }\,\!</math>  is:
Step 3: Calculate <math>c=\tfrac{1}{\sqrt{A}}\,\!</math> and <math>S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\!</math>. Thus an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>\hat{\beta }\,\!</math>  is:
Line 552: Line 547:
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on:  
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is treated as being normally distributed as well. These bounds are based on:  


::<math>\frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on <math>\lambda \,\!</math> are given as:  
The approximate confidence bounds on <math>\lambda \,\!</math> are given as:  


::<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math>
:<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math>


:where:  
where:  


::<math>\hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\!</math>
:<math>\hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\!</math>


The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section.
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section.


====Crow Bounds====
====Crow Bounds====
'''Time Terminated Data'''
'''Time Terminated Data'''
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\  
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\  
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot T_{k}^{\beta }}   
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot T_{k}^{\beta }}   
Line 576: Line 569:


'''Failure Terminated Data'''
'''Failure Terminated Data'''
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:
For the 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval, the confidence bounds on <math>\lambda \,\!</math> are:


::<math>\begin{align}
:<math>\begin{align}
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\  
   {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\  
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }}   
   {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }}   
Line 588: Line 580:
Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds are calculated from:
Since the growth rate is equal to <math>1-\beta \,\!</math>, the confidence bounds are calculated from:


::<math>\begin{align}
:<math>\begin{align}
   G\operatorname{row}th\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\  
   G\operatorname{row}th\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\  
   G\operatorname{row}th\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}}   
   G\operatorname{row}th\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}}   
Line 599: Line 591:
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well.  
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is treated as being normally distributed as well.  


::<math>\frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the cumulative MTBF are then estimated from:
The approximate confidence bounds on the cumulative MTBF are then estimated from:


::<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\!</math>
:<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\!</math>
:<math>{{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,   
   & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,   
Line 616: Line 608:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}}   
   \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}}   
Line 624: Line 616:
Calculate the Crow cumulative failure intensity confidence bounds:  
Calculate the Crow cumulative failure intensity confidence bounds:  


::<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>
:<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math>


::<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math>
:<math>C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math>


:Then:
Then:


::<math>\begin{align}
:<math>\begin{align}
   {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\  
   {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\  
   {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}}   
   {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}}   
Line 639: Line 631:
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed as well.  
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed as well.  


::<math>\frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the instantaneous MTBF are then estimated from:  
The approximate confidence bounds on the instantaneous MTBF are then estimated from:  


::<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\!</math>
:<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math>
:<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 656: Line 648:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\  
   \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}}   
   \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}}   
Line 669: Line 661:
Step 3: Calculate <math>D=\sqrt{\tfrac{1}{A}+1}\,\!</math> and <math>W=\tfrac{({{z}_{1-\alpha /2}})\cdot D}{\sqrt{N}}\,\!</math>. Thus, an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>{{\hat{m}}_{i}}(t)\,\!</math> is:
Step 3: Calculate <math>D=\sqrt{\tfrac{1}{A}+1}\,\!</math> and <math>W=\tfrac{({{z}_{1-\alpha /2}})\cdot D}{\sqrt{N}}\,\!</math>. Thus, an approximate 2-sided <math>(1-\alpha )\,\!</math> 100% confidence interval on <math>{{\hat{m}}_{i}}(t)\,\!</math> is:


::<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math>
:<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math>


===Bounds on Cumulative Failure Intensity (Grouped)===
===Bounds on Cumulative Failure Intensity (Grouped)===
Line 675: Line 667:
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed.   
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is treated as being normally distributed.   


::<math>\frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


The approximate confidence bounds on the cumulative failure intensity are then estimated from:  
The approximate confidence bounds on the cumulative failure intensity are then estimated from:  


::<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\!</math>
:<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\!</math>


:where:  
where:  


::<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math>
:<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math>


:and:  
and:  


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 694: Line 686:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}}   
   \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}}   
Line 702: Line 694:
The Crow cumulative failure intensity confidence bounds are given as:  
The Crow cumulative failure intensity confidence bounds are given as:  


::<math>\begin{align}
:<math>\begin{align}
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
   C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\  
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}   
   C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}   
Line 711: Line 703:
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed.  
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>, must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\tilde{\ }N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\tilde{\ }N(0,1)\,\!</math>


The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  


::<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\!</math>
:<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\!</math>


where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and:  
where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and:  


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 726: Line 718:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\  
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}}   
   \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}}   
Line 734: Line 726:
The Crow instantaneous failure intensity confidence bounds are given as:  
The Crow instantaneous failure intensity confidence bounds are given as:  


::<math>\begin{align}
:<math>\begin{align}
   {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\  
   {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\  
   {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}}   
   {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}}   
Line 743: Line 735:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 758: Line 750:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  


::<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
Line 773: Line 765:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 788: Line 780:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:


::<math>\hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\!</math>
:<math>\hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot \text{ }{{m}_{i}}(T) \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot {{m}_{i}}(T))+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot \text{ }{{m}_{i}}(T) \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot {{m}_{i}}(T))+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot \text{ }{{m}_{i}}(T))}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot \text{ }{{m}_{i}}(T))}^{1/(1-\beta )}}}{\lambda (1-\beta )}   
Line 798: Line 790:
Step 1: Calculate the confidence bounds on the instantaneous MTBF:
Step 1: Calculate the confidence bounds on the instantaneous MTBF:


::<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math>
:<math>MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\!</math>


Step 2: Use equations in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_MTBF_.28Grouped.29|Bounds on Time Given Instantaneous MTBF]] section to calculate the time given the instantaneous MTBF.
Step 2: Use equations in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Time_Given_Instantaneous_MTBF_.28Grouped.29|Bounds on Time Given Instantaneous MTBF]] section to calculate the time given the instantaneous MTBF.
Line 806: Line 798:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 821: Line 813:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:  
   
   
::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\  
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
\end{align}\,\!</math>
\end{align}\,\!</math>


====Crow Bounds====
====Crow Bounds====
Step 1: Calculate:
Step 1: Calculate:


::<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math>
:<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math>


Step 2: Estimate the number of failures:
Step 2: Estimate the number of failures:


::<math>N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\!</math>
:<math>N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\!</math>


Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations:  
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations:  


::<math>\begin{align}
:<math>\begin{align}
   {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\  
   {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\  
   {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)}   
   {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)}   
Line 847: Line 838:
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  
The time, <math>T\,\!</math>, must be positive, thus <math>\ln T\,\!</math> is treated as being normally distributed.  


::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\!</math>


Confidence bounds on the time are given by:  
Confidence bounds on the time are given by:  


::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math>


:where:  
where:  


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
   & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })   
Line 862: Line 853:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:   
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:   


::<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math>
:<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\  
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
   \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )}   
\end{align}\,\!</math>
\end{align}\,\!</math>


====Crow Bounds====
====Crow Bounds====
Line 878: Line 868:
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed.   
The cumulative number of failures, <math>N(t)\,\!</math>, must be positive, thus <math>\ln N(t)\,\!</math> is treated as being normally distributed.   


::<math>\frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>
:<math>\frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\!</math>


::<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math>
:<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math>


:where:  
where:  


::<math>\hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\!</math>
:<math>\hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\!</math>


::<math>\begin{align}
:<math>\begin{align}
   Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
   & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
Line 893: Line 883:
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:   
The variance calculation is the same as given above in the [[Crow-AMSAA_Confidence_Bounds#Bounds_on_Beta_.28Grouped.29|Bounds on Beta (Grouped)]] section and:   


::<math>\begin{align}
:<math>\begin{align}
   \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\  
   \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\  
   \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}}   
   \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}}   
\end{align}\,\!</math>
\end{align}\,\!</math>


====Crow Bounds====
====Crow Bounds====
The Crow confidence bounds on cumulative number of failures are:  
The Crow confidence bounds on cumulative number of failures are:  


::<math>\begin{align}
:<math>\begin{align}
   {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\  
   {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\  
   {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}}   
   {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}}   

Revision as of 01:12, 31 January 2014

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis


RGAbox.png

Appendix C  
Crow-AMSAA Confidence Bounds  


In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow-AMSAA (NHPP) model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow.

Note regarding the Crow Bounds calculations: The equations that involve the use of the Chi-Squared distribution assume left-tail probability.

Individual (Non-Grouped) Data

Bounds on Beta

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds are given as:

[math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]

[math]\displaystyle{ \alpha \,\! }[/math] in [math]\displaystyle{ {{z}_{\alpha }}\,\! }[/math] is different ( [math]\displaystyle{ \alpha /2\,\! }[/math], [math]\displaystyle{ \alpha \,\! }[/math] ) according to a 2-sided confidence interval or a 1-sided confidence interval, and variances can be calculated using the Fisher Matrix.

[math]\displaystyle{ \left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} \\ \end{matrix} \right]_{\beta =\hat{\beta },\lambda =\hat{\lambda }}^{-1}=\left[ \begin{matrix} Var(\hat{\lambda }) & Cov(\hat{\beta },\hat{\lambda }) \\ Cov(\hat{\beta },\hat{\lambda }) & Var(\hat{\beta }) \\ \end{matrix} \right]\,\! }[/math]

[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function:

[math]\displaystyle{ \Lambda =N\ln \lambda +N\ln \beta -\lambda {{T}^{\beta }}+(\beta -1)\underset{i=1}{\overset{N}{\mathop \sum }}\,\ln {{T}_{i}}\,\! }[/math]
[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{N}{{{\lambda }^{2}}}\,\! }[/math]

and:

[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{N}{{{\beta }^{2}}}-\lambda {{T}^{\beta }}{{(\ln T)}^{2}}\,\! }[/math]

also:

[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-{{T}^{\beta }}\ln T\,\! }[/math]

Crow Bounds

Time Terminated Data

For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \beta \,\! }[/math], calculate:

[math]\displaystyle{ \begin{align} & {{D}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \\ & {{D}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2(N-1)} \end{align}\,\! }[/math]

The fractiles can be found in the tables of the [math]\displaystyle{ {{\chi }^{2}}\,\! }[/math] distribution. Thus the confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\ {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta } \end{align}\,\! }[/math]

Failure Terminated Data

For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \beta \,\! }[/math], calculate:

[math]\displaystyle{ \begin{align} {{D}_{L}}= & \frac{N\cdot \chi _{\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \\ {{D}_{U}}= & \frac{N\cdot \chi _{1-\tfrac{\alpha }{2},2(N-1)}^{2}}{2(N-1)(N-2)} \end{align}\,\! }[/math]

Thus, the confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\beta }_{L}}= & {{D}_{L}}\cdot \hat{\beta } \\ {{\beta }_{U}}= & {{D}_{U}}\cdot \hat{\beta } \end{align}\,\! }[/math]

Bounds on Lambda

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive; thus, [math]\displaystyle{ \ln \lambda \,\! }[/math] is treated as being normally distributed as well. These bounds are based on:

[math]\displaystyle{ \frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:

[math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]

where:

[math]\displaystyle{ \hat{\lambda }=\frac{n}{{{T}^{*\hat{\beta }}}}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section.

Crow Bounds

Time Terminated Data

For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2{{T}^{{\hat{\beta }}}}} \end{align}\,\! }[/math]

The fractiles can be found in the tables of the [math]\displaystyle{ {{\chi }^{2}}\,\! }[/math] distribution.

Failure Terminated Data

For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2{{T}^{{\hat{\beta }}}}} \end{align}\,\! }[/math]

Bounds on Growth Rate

Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math], the confidence bounds for both the Fisher Matrix and Crow methods are:

[math]\displaystyle{ G\text{row}th Rate_L=1-\beta_U\,\! }[/math]
[math]\displaystyle{ G\text{row}th Rate_U=1-\beta_L\,\! }[/math]

[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the Bounds on Beta section.

Bounds on Cumulative MTBF

Fisher Matrix Bounds

The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:

[math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]

Time Terminated Data

[math]\displaystyle{ C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t}\,\! }[/math]

Failure Terminated Data

[math]\displaystyle{ C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]

Then:

[math]\displaystyle{ \begin{align} & {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ & {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]

Bounds on Instantaneous MTBF

Fisher Matrix Bounds

The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }). \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

Failure Terminated Data

Consider the following equation:

[math]\displaystyle{ G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\! }[/math]

Find the values [math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ c\,\! }[/math] to [math]\displaystyle{ G({{n}^{2}}/c|n)=\xi \,\! }[/math] for [math]\displaystyle{ \xi =\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ \xi =1-\tfrac{\alpha }{2}\,\! }[/math], respectively. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].

Time Terminated Data

Consider the following equation where [math]\displaystyle{ {{I}_{1}}(.)\,\! }[/math] is the modified Bessel function of order one:

[math]\displaystyle{ H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\! }[/math]

Find the values [math]\displaystyle{ {{\Pi }_{1}}\,\! }[/math] and [math]\displaystyle{ {{\Pi }_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ x\,\! }[/math] to [math]\displaystyle{ H(x|k)=\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ H(x|k)=1-\tfrac{\alpha }{2}\,\! }[/math] in the cases corresponding to the lower and upper bounds, respectively. Calculate [math]\displaystyle{ \Pi =\tfrac{4{{n}^{2}}}{{{x}^{2}}}\,\! }[/math] for each case. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math], then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].

Bounds on Cumulative Failure Intensity

Fisher Matrix Bounds

The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]

and:

[math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow lower cumulative failure intensity confidence bound is given by:

[math]\displaystyle{ \begin{align} C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ \end{align}\,\! }[/math]

Time Terminated

[math]\displaystyle{ \begin{align} C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+1}^{2}}{2\cdot t} \end{align}\,\! }[/math]

Failure Terminated

[math]\displaystyle{ \begin{align} C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \end{align}\,\! }[/math]

Bounds on Instantaneous Failure Intensity

Fisher Matrix Bounds

The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\text{ }\tilde{\ }\text{ }N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\! }[/math]

where

[math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow instantaneous failure intensity confidence bounds are given as:

[math]\displaystyle{ \begin{align} {{\lambda }_{i}}{{(t)}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{\lambda }_{i}}{{(t)}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]

Bounds on Time Given Cumulative Failure Intensity

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]

Step 2: Estimate the number of failures:

[math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]

Step 3: Obtain the confidence bounds on time, given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:

[math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]

Bounds on Time Given Cumulative MTBF

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \text{ }\cdot \text{ }{{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ {{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\! }[/math].

Step 2: Use the equations from the Bounds on Time Given Instantaneous Failure Intensity section to calculate the bounds.

Bounds on Time Given Instantaneous MTBF

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in the Bounds on Instantaneous MTBF section. Step 2: Calculate the bounds on time as follows.

Failure Terminated Data

[math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\! }[/math]

So the lower an upper bounds on time are:

[math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\! }[/math]

Time Terminated Data

[math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\! }[/math]

So the lower and upper bounds on time are:

[math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\! }[/math]

Bounds on Time Given Instantaneous Failure Intensity

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\! }[/math]. Step 2: Use the equations from the Bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.

Bounds on Cumulative Number of Failures

Fisher Matrix Bounds

The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln N(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
[math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta section and:

[math]\displaystyle{ \begin{align} \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\ \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}} \end{align}\,\! }[/math]

Crow Bounds

The Crow cumulative number of failure confidence bounds are:

[math]\displaystyle{ \begin{align} {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained from the Crow instantaneous failure intensity confidence bounds equations given above.

Grouped Data

Bounds on Beta (Grouped)

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln \hat{\beta }-\ln \beta }{\sqrt{Var(\ln \hat{\beta }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds are given as:

[math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \hat{\beta }\,\! }[/math] can be obtained by [math]\displaystyle{ \underset{i=1}{\overset{K}{\mathop{\sum }}}\,{{n}_{i}}\left( \tfrac{T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln \,{{T}_{i-1}}}{T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}}}-\ln {{T}_{k}} \right)=0\,\! }[/math].

All variance can be calculated using the Fisher Matrix:

[math]\displaystyle{ \left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} \\ \end{matrix} \right]_{\beta =\hat{\beta },\lambda =\hat{\lambda }}^{-1}=\left[ \begin{matrix} Var(\hat{\lambda }) & Cov(\hat{\beta },\hat{\lambda }) \\ Cov(\hat{\beta },\hat{\lambda }) & Var(\hat{\beta }) \\ \end{matrix} \right]\,\! }[/math]

[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function where ln [math]\displaystyle{ ^{2}T={{\left( \ln T \right)}^{2}}\,\! }[/math] and:

[math]\displaystyle{ \Lambda =\underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ {{n}_{i}}\ln (\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })-\ln {{n}_{i}}! \right]\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}= & -\frac{n}{{{\lambda }^{2}}} \\ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}= & \underset{i=1}{\overset{k}{\mathop \sum }}\,\left[ \begin{matrix} {{n}_{i}}\left( \tfrac{(T_{i}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i}}-T_{i-1}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i-1}})(T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}})-{{\left( T_{i}^{{\hat{\beta }}}\ln {{T}_{i}}-T_{i-1}^{{\hat{\beta }}}\ln {{T}_{i-1}} \right)}^{2}}}{{{(T_{i}^{{\hat{\beta }}}-T_{i-1}^{{\hat{\beta }}})}^{2}}} \right) \\ -\left( \lambda T_{i}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i}}-\lambda T_{i-1}^{{\hat{\beta }}}{{\ln }^{2}}{{T}_{i-1}} \right) \\ \end{matrix} \right] \\ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }= & -T_{K}^{\beta }\ln {{T}_{k}} \end{align}\,\! }[/math]
Crow Bounds

Step 1: Calculate [math]\displaystyle{ P(i)=\tfrac{{{T}_{i}}}{{{T}_{K}}},\,\,i=1,2,\ldots ,K\,\! }[/math]. Step 2: Calculate:

[math]\displaystyle{ A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{[P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}}]}^{2}}}{[P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}}]}\,\! }[/math]

Step 3: Calculate [math]\displaystyle{ c=\tfrac{1}{\sqrt{A}}\,\! }[/math] and [math]\displaystyle{ S=\tfrac{({{z}_{1-\alpha /2}})\cdot C}{\sqrt{N}}\,\! }[/math]. Thus an approximate 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ \hat{\beta }\,\! }[/math] is:

Bounds on Lambda (Grouped)

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda \,\! }[/math] is treated as being normally distributed as well. These bounds are based on:

[math]\displaystyle{ \frac{\ln \hat{\lambda }-\ln \lambda }{\sqrt{Var(\ln \hat{\lambda }})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:

[math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]

where:

[math]\displaystyle{ \hat{\lambda }=\frac{n}{T_{k}^{{\hat{\beta }}}}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section.

Crow Bounds

Time Terminated Data For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot T_{k}^{\beta }} \end{align}\,\! }[/math]

Failure Terminated Data For the 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval, the confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \\ {{\lambda }_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot T_{k}^{\beta }} \end{align}\,\! }[/math]

Bounds on Growth Rate (Grouped)

Fisher Matrix Bounds

Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math], the confidence bounds are calculated from:

[math]\displaystyle{ \begin{align} G\operatorname{row}th\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ G\operatorname{row}th\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} \end{align}\,\! }[/math]

[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the Bounds on Beta (Grouped) section.

Bounds on Cumulative MTBF

Fisher Matrix Bounds

The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{c}}(t)-\ln {{m}_{c}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{c}}(t))}/{{{\hat{m}}}_{c}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{{\hat{\lambda }}}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

Calculate the Crow cumulative failure intensity confidence bounds:

[math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
[math]\displaystyle{ C{{(t)}_{U}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]

Then:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]

Bounds on Instantaneous MTBF (Grouped)

Fisher Matrix Bounds

The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed as well.

[math]\displaystyle{ \frac{\ln {{{\hat{m}}}_{i}}(t)-\ln {{m}_{i}}(t)}{\sqrt{Var(\ln {{{\hat{m}}}_{i}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{m}}}_{i}}(t))}/{{{\hat{m}}}_{i}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{{\hat{m}}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{{\hat{\beta }}}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln t \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{{\hat{\lambda }}}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ P(i)=\tfrac{{{T}_{i}}}{{{T}_{K}}},\,\,i=1,2,\ldots ,K\,\! }[/math]. Step 2: Calculate:

[math]\displaystyle{ A=\underset{i=1}{\overset{K}{\mathop \sum }}\,\frac{{{\left[ P{{(i)}^{{\hat{\beta }}}}\ln P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{\hat{\beta }}}\ln P{{(i-1)}^{{\hat{\beta }}}} \right]}^{2}}}{\left[ P{{(i)}^{{\hat{\beta }}}}-P{{(i-1)}^{{\hat{\beta }}}} \right]}\,\! }[/math]

Step 3: Calculate [math]\displaystyle{ D=\sqrt{\tfrac{1}{A}+1}\,\! }[/math] and [math]\displaystyle{ W=\tfrac{({{z}_{1-\alpha /2}})\cdot D}{\sqrt{N}}\,\! }[/math]. Thus, an approximate 2-sided [math]\displaystyle{ (1-\alpha )\,\! }[/math] 100% confidence interval on [math]\displaystyle{ {{\hat{m}}_{i}}(t)\,\! }[/math] is:

[math]\displaystyle{ MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\! }[/math]

Bounds on Cumulative Failure Intensity (Grouped)

Fisher Matrix Bounds

The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{c}}(t)-\ln {{\lambda }_{c}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{c}}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{c}}(t))}/{{{\hat{\lambda }}}_{c}}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]

and:

[math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow cumulative failure intensity confidence bounds are given as:

[math]\displaystyle{ \begin{align} C{{(t)}_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t} \\ C{{(t)}_{U}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t} \end{align}\,\! }[/math]

Bounds on Instantaneous Failure Intensity (Grouped)

Fisher Matrix Bounds

The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\tilde{\ }N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math] and:

[math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow instantaneous failure intensity confidence bounds are given as:

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]

Bounds on Time Given Cumulative MTBF (Grouped)

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot \,{{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot \text{ }{{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ {{\lambda }_{c}}(T)=\tfrac{1}{MTB{{F}_{c}}}\,\! }[/math]. Step 2: Use equations the Bounds on Time Given Cumulative Failure Intensity section to calculate the bounds.

Bounds on Time Given Instantaneous MTBF (Grouped)

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot {{m}_{i}}(T))}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot \text{ }{{m}_{i}}(T) \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot {{m}_{i}}(T))+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot \text{ }{{m}_{i}}(T))}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate the confidence bounds on the instantaneous MTBF:

[math]\displaystyle{ MTB{{F}_{i}}={{\hat{m}}_{i}}(1\pm W)\,\! }[/math]

Step 2: Use equations in the Bounds on Time Given Instantaneous MTBF section to calculate the time given the instantaneous MTBF.

Bounds on Time Given Cumulative Failure Intensity (Grouped)

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]

Step 2: Estimate the number of failures:

[math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]

Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:

[math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]

Bounds on Time Given Instantaneous Failure Intensity (Grouped)

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)\,\! }[/math]

Confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\left[ -\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )} \right] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{{{\lambda }_{i}}(T)}\,\! }[/math]. Step 2: Follow the same process as in the Bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.

Bounds on Cumulative Number of Failures (Grouped)

Fisher Matrix Bounds

The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math], must be positive, thus [math]\displaystyle{ \ln N(t)\,\! }[/math] is treated as being normally distributed.

[math]\displaystyle{ \frac{\ln \hat{N}(t)-\ln N(t)}{\sqrt{Var(\ln \hat{N}(t)})}\ \tilde{\ }\ N(0,1)\,\! }[/math]
[math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]

where:

[math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{{\hat{\beta }}}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial \hat{N}(t)}{\partial \beta } \right)\left( \frac{\partial \hat{N}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as given above in the Bounds on Beta (Grouped) section and:

[math]\displaystyle{ \begin{align} \frac{\partial \hat{N}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{{\hat{\beta }}}}\ln t \\ \frac{\partial \hat{N}(t)}{\partial \lambda }= & {{t}^{{\hat{\beta }}}} \end{align}\,\! }[/math]

Crow Bounds

The Crow confidence bounds on cumulative number of failures are:

[math]\displaystyle{ \begin{align} {{N}_{L}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)= & \frac{T}{{\hat{\beta }}}{{\lambda }_{i}}{{(T)}_{U}} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained from the equations given above for Crow instantaneous failure intensity confidence bounds with grouped data.