Template:Grouped data camsaa: Difference between revisions
(Created page with '==Grouped Data== For analyzing grouped data, we follow the same logic described in Chapter 4 for the Duane model. If Eqn. (amsaa2a) is linearized: ::<math>\ln [E(N(T))]=\ln \la…') |
Lisa Hacker (talk | contribs) |
||
Line 1: | Line 1: | ||
==Grouped Data== | ==Grouped Data== <!-- THIS SECTION HEADER IS LINKED FROM: Operational Mission Profile Testing. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
For analyzing grouped data, we follow the same logic described | For analyzing grouped data, we follow the same logic described previously for the [[Duane Model|Duane model]]. If Eqn. (amsaa2a) is linearized: | ||
::<math>\ln [E(N(T))]=\ln \lambda +\beta \ln T</math> | ::<math>\ln [E(N(T))]=\ln \lambda +\beta \ln T</math> |
Revision as of 00:57, 23 August 2012
Grouped Data
For analyzing grouped data, we follow the same logic described previously for the Duane model. If Eqn. (amsaa2a) is linearized:
- [math]\displaystyle{ \ln [E(N(T))]=\ln \lambda +\beta \ln T }[/math]
According to Crow [9], the likelihood function for the grouped data case, (where [math]\displaystyle{ {{n}_{1}}, }[/math] [math]\displaystyle{ {{n}_{2}}, }[/math] [math]\displaystyle{ {{n}_{3}},\ldots , }[/math] [math]\displaystyle{ {{n}_{k}} }[/math] failures are observed and [math]\displaystyle{ k }[/math] is the number of groups), is:
- [math]\displaystyle{ \underset{i=1}{\overset{k}{\mathop \prod }}\,\underset{}{\overset{}{\mathop{\Pr }}}\,({{N}_{i}}={{n}_{i}})=\underset{i=1}{\overset{k}{\mathop \prod }}\,\frac{{{(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })}^{{{n}_{i}}}}\cdot {{e}^{-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })}}}{{{n}_{i}}!} }[/math]
And the MLE of [math]\displaystyle{ \lambda }[/math] based on this relationship is:
- [math]\displaystyle{ \widehat{\lambda }=\frac{n}{T_{k}^{\widehat{\beta }}} }[/math]
And the estimate of [math]\displaystyle{ \beta }[/math] is the value [math]\displaystyle{ \widehat{\beta } }[/math] that satisfies:
- [math]\displaystyle{ \underset{i=1}{\overset{k}{\mathop \sum }}\,{{n}_{i}}\left[ \frac{T_{i}^{\widehat{\beta }}\ln {{T}_{i}}-T_{i-1}^{\widehat{\beta }}\ln {{T}_{i-1}}}{T_{i}^{\widehat{\beta }}-T_{i-1}^{\widehat{\beta }}}-\ln {{T}_{k}} \right]=0 }[/math]
Example 4
Consider the grouped failure times data given in Table 5.2. Solve for the Crow-AMSAA parameters using MLE.
Run Number | Cumulative Failures | End Time(hr) | [math]\displaystyle{ \ln{(T_i)} }[/math] | [math]\displaystyle{ \ln{(T_i)^2} }[/math] | [math]\displaystyle{ \ln{(\theta_i)} }[/math] | [math]\displaystyle{ \ln{(T_i)}\cdot\ln{(\theta_i)} }[/math] |
---|---|---|---|---|---|---|
1 | 2 | 200 | 5.298 | 28.072 | 0.693 | 3.673 |
2 | 3 | 400 | 5.991 | 35.898 | 1.099 | 6.582 |
3 | 4 | 600 | 6.397 | 40.921 | 1.386 | 8.868 |
4 | 11 | 3000 | 8.006 | 64.102 | 2.398 | 19.198 |
Sum = | 25.693 | 168.992 | 5.576 | 38.321 |
Solution To obtain the estimator of [math]\displaystyle{ \beta }[/math] , Eqn. (vv) must be solved numerically for [math]\displaystyle{ \beta }[/math] . Using RGA, the value of [math]\displaystyle{ \widehat{\beta } }[/math] is [math]\displaystyle{ 0.6315 }[/math] . Now plugging this value into Eqn. (vv1), the estimator of [math]\displaystyle{ \lambda }[/math] is:
- [math]\displaystyle{ \begin{align} & \widehat{\lambda }= & \frac{11}{3,{{000}^{0.6315}}} \\ & = & 0.0701 \end{align} }[/math]
Therefore, the intensity function becomes:
- [math]\displaystyle{ \widehat{\rho }(T)=0.0701\cdot 0.6315\cdot {{T}^{-0.3685}} }[/math]