Template:Eyring-log cb on time: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Confidence Bounds on Time=== <br> The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect…')
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
===Confidence Bounds on Time===
#REDIRECT [[Eyring_Relationship#Approximate_Confidence_Bounds_for_the_Eyring-Lognormal]]
 
<br>
The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect to time as follows:
 
<br>
::<math>{T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}})=-\ln (V)-\widehat{A}+\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}}</math>
 
<br>
:where:
 
<br>
::<math>\begin{align}
  & {T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}})= & \ln (T) \\
& z= & {{\Phi }^{-1}}\left[ F({T}') \right]
\end{align}</math>
 
<br>
:and:
 
<br>
::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math>
 
<br>
The next step is to calculate the variance of  <math>{T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}}):</math>
 
<br>
::<math>\begin{align}
  & Var({T}')= & {{\left( \frac{\partial {T}'}{\partial A} \right)}^{2}}Var(\widehat{A})+{{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
&  & +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial B} \right)Cov\left( \widehat{A},\widehat{B} \right) \\
&  & +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) \\
&  & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) 
\end{align}</math>
 
<br>
:or:
 
<br>
::<math>\begin{align}
  & Var({T}')= & Var(\widehat{A})+\frac{1}{V}Var(\widehat{B})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
&  & -\frac{2}{V}Cov\left( \widehat{A},\widehat{B} \right) \\
&  & -2\widehat{z}Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) \\
&  & +\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) 
\end{align}</math>
 
<br>
The upper and lower bounds are then found by:
 
<br>
::<math>\begin{align}
  & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\
& T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} 
\end{align}</math>
 
<br>
Solving for  <math>{{T}_{U}}</math>  and  <math>{{T}_{L}}</math>  yields:
 
<br>
::<math>\begin{align}
  & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\
& {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} 
\end{align}</math>

Latest revision as of 01:16, 17 August 2012