| 
				     | 
				
| Line 1: | 
Line 1: | 
 | ===Confidence Bounds on Time===
  |  | #REDIRECT [[Eyring_Relationship#Approximate_Confidence_Bounds_for_the_Eyring-Weibull]]  | 
 |    |  | 
 | <br>
  |  | 
 | The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   \ln (R)&=\  -{{\left( \widehat{T}\cdot V\cdot {{e}^{\left( \widehat{A}-\tfrac{\widehat{B}}{V} \right)}} \right)}^{\widehat{\beta }}} \\ 
  |  | 
 |   \ln (-\ln (R))&=\  \widehat{\beta }\left( \ln \widehat{T}+\ln V+\widehat{A}-\frac{\widehat{B}}{V} \right)  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | or:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))-\ln V-\widehat{A}+\frac{\widehat{B}}{V}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where <math>\widehat{u}=ln(\widehat{T})</math>. The upper and lower bounds on  <math>\widehat{u}</math>  are then estimated from:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |    Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial A} \right)}^{2}}Var(\widehat{A}) +{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial A} \right)Cov(\widehat{\beta },\widehat{A}) \\ 
  |  | 
 |  & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{\beta },\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial A} \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{A},\widehat{B})  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | or:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & Var(\widehat{u})= \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta }) +Var(\widehat{A})+\frac{1}{{{V}^{2}}}Var(\widehat{B}) +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}}Cov(\widehat{\beta },\widehat{A})-\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}V}Cov(\widehat{\beta },\widehat{B}) -\frac{2}{V}Cov(\widehat{A},\widehat{B})  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | The upper and lower bounds on time are then found by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ 
  |  | 
 |  & {{T}_{L}}= & {{e}^{{{u}_{L}}}}  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  |