|
|
(4 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ==Eyring-Lognormal==
| | #REDIRECT [[Eyring_Relationship#Eyring-Lognormal]] |
| <br>
| |
| The <math>pdf</math> of the lognormal distribution is given by:
| |
| | |
| <br>
| |
| ::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| | |
| <br>
| |
| :where:
| |
| | |
| <br>
| |
| ::<math>{T}'=\ln (T)</math>
| |
| | |
| <br>
| |
| ::<math>T=\text{times-to-failure}</math>
| |
| | |
| <br>
| |
| and
| |
| <br>
| |
| • <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure.
| |
| | |
| • <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure.
| |
| | |
| <br>
| |
| The Eyring-lognormal model can be obtained first by setting <math>\breve{T}=L(V)</math>:
| |
| | |
| <br>
| |
| ::<math>\breve{T}=L(V)=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math>
| |
| | |
| <br>
| |
| :or:
| |
| <br>
| |
| <br>
| |
| ::<math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math>
| |
| | |
| <br>
| |
| :Thus:
| |
| <br>
| |
| <br>
| |
| ::<math>{{\overline{T}}^{\prime }}=-\ln (V)-A+\frac{B}{V}</math>
| |
| | |
| | |
| <br>
| |
| Substituting this into the lognormal <math>pdf</math> yields the Eyring-lognormal model <math>pdf</math>
| |
| :or:
| |
| | |
| ::<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| | |
| <br>
| |
| {{eyring-log stat prop sum}}
| |
| | |
| ===Parameter Estimation===
| |
| | |
| {{eyring-log mle}}
| |