Template:Alta al: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
Line 1: Line 1:
==Arrhenius-Lognormal==
#REDIRECT [[Arrhenius_Relationship#Arrhenius-Lognormal]]
<br>
The  <math>pdf</math>  of the lognormal distribution is given by:
<br>
<br>
::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
<br>
where:
 
<br>
::<math>{T}'=\ln(T) </math>
 
<br>
and:
<br>
• <math>T=</math>  times-to-failure.
 
• <math>{T}'=</math>  mean of the natural logarithms of the times-to-failure.
 
• <math>{{\sigma }_{{{T}'}}}=</math>  standard deviation of the natural logarithms of the times-to-failure.
<br>
<br>
The median of the lognormal distribution is given by:
 
<br>
::<math>\breve{T}={{e}^{{{\overline{T}}^{\prime }}}}</math>
 
<br>
 
The Arrhenius-lognormal model  <math>pdf</math>  can be obtained first by setting <math>\breve{T}=L(V)</math>. Therefore:
 
::<math>\breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
 
or:
 
::<math>{{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}}</math>
 
Thus:
 
::<math>{{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V}</math>
 
 
Substituting the above equation into the lognormal <math>pdf</math> yields the Arrhenius-lognormal model  <math>pdf</math>  or:
 
::<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
<br>
Note that in the Arrhenius-lognormal <math>pdf</math>, it was assumed that the standard deviation of the natural logarithms of the times-to-failure,  <math>{{\sigma }_{{{T}'}}},</math>  is independent of stress. This assumption implies that the shape of the distribution does not change with stress ( <math>{{\sigma }_{{{T}'}}}</math>  is the shape parameter of the lognormal distribution).
<br>
{{alta al stat prop sum}}
 
===Parameter Estimation===
<br>
{{arrhenius-log mle}}

Latest revision as of 05:28, 16 August 2012