Loglogistic Distribution Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
\end{align}</math>
\end{align}</math>


For rank regression on  <math>X\ \ :</math>   
For rank regression on  <math>X\ </math>:  


::<math>\begin{align}
::<math>\begin{align}
Line 35: Line 35:
\end{align}</math>
\end{align}</math>


For rank regression on  <math>Y\ \ :</math>   
For rank regression on  <math>Y\ </math>:  


::<math>\begin{align}
::<math>\begin{align}

Revision as of 07:05, 15 August 2012

Weibull Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.




This example appears in the Life Data Analysis Reference book.

Determine the loglogistic parameter estimates for the data given in the following table.

[math]\displaystyle{ \overset{{}}{\mathop{\text{Test data}}}\, }[/math]
[math]\displaystyle{ \begin{matrix} \text{Data point index} & \text{Last Inspected} & \text{State End time} \\ \text{1} & \text{105} & \text{106} \\ \text{2} & \text{197} & \text{200} \\ \text{3} & \text{297} & \text{301} \\ \text{4} & \text{330} & \text{335} \\ \text{5} & \text{393} & \text{401} \\ \text{6} & \text{423} & \text{426} \\ \text{7} & \text{460} & \text{468} \\ \text{8} & \text{569} & \text{570} \\ \text{9} & \text{675} & \text{680} \\ \text{10} & \text{884} & \text{889} \\ \end{matrix} }[/math]


Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align} }[/math]

For rank regression on [math]\displaystyle{ X\ }[/math]:

[math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align} }[/math]

For rank regression on [math]\displaystyle{ Y\ }[/math]:

[math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align} }[/math]