Template:Lognormal distribution fisher matrix bounds: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Fisher Matrix Bounds=== ====Bounds on the Parameters==== The lower and upper bounds on the mean, <math>{\mu }'</math> , are estimated from: ::<math>\begin{align} & \mu _{…')
 
 
(26 intermediate revisions by one other user not shown)
Line 1: Line 1:
===Fisher Matrix Bounds===
#REDIRECT [[The_Lognormal_Distribution#Fisher_Matrix_Bounds]]
====Bounds on the Parameters====
The lower and upper bounds on the mean,  <math>{\mu }'</math> , are estimated from:
 
 
::<math>\begin{align}
  & \mu _{U}^{\prime }= & {{\widehat{\mu }}^{\prime }}+{{K}_{\alpha }}\sqrt{Var({{\widehat{\mu }}^{\prime }})}\text{ (upper bound),} \\
& \mu _{L}^{\prime }= & {{\widehat{\mu }}^{\prime }}-{{K}_{\alpha }}\sqrt{Var({{\widehat{\mu }}^{\prime }})}\text{ (lower bound)}\text{.} 
\end{align}</math>
 
 
For the standard deviation,  <math>{{\widehat{\sigma }}_{{{T}'}}}</math> ,  <math>\ln ({{\widehat{\sigma }}_{{{T}'}}})</math>  is treated as normally distributed, and the bounds are estimated from:
 
 
::<math>\begin{align}
  & {{\sigma }_{U}}= & {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}\text{ (upper bound),} \\
& {{\sigma }_{L}}= & \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}}\text{ (lower bound),} 
\end{align}</math>
 
where  <math>{{K}_{\alpha }}</math>  is defined by:
 
::<math>\alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }})</math>
 
 
If  <math>\delta </math>  is the confidence level, then  <math>\alpha =\tfrac{1-\delta }{2}</math>  for the two-sided bounds and  <math>\alpha =1-\delta </math>  for the one-sided bounds.
 
The variances and covariances of  <math>{{\widehat{\mu }}^{\prime }}</math>  and  <math>{{\widehat{\sigma }}_{{{T}'}}}</math>  are estimated as follows:
 
 
::<math>\left( \begin{matrix}
  \widehat{Var}\left( {{\widehat{\mu }}^{\prime }} \right) & \widehat{Cov}\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right)  \\
  \widehat{Cov}\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right) & \widehat{Var}\left( {{\widehat{\sigma }}_{{{T}'}}} \right)  \\
\end{matrix} \right)=\left( \begin{matrix}
  -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{({\mu }')}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {\mu }'\partial {{\sigma }_{{{T}'}}}}  \\
  {} & {}  \\
  -\tfrac{{{\partial }^{2}}\Lambda }{\partial {\mu }'\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}}  \\
\end{matrix} \right)_{{\mu }'={{\widehat{\mu }}^{\prime }},{{\sigma }_{{{T}'}}}={{\widehat{\sigma }}_{{{T}'}}}}^{-1}</math>
 
 
where  <math>\Lambda </math>  is the log-likelihood function of the lognormal distribution.
 
====Bounds on Reliability====
The reliability of the lognormal distribution is:
 
 
::<math>\hat{R}({T}';{\mu }',{{\sigma }_{{{T}'}}})=\int_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-{{\widehat{\mu }}^{\prime }}}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt</math>
 
 
Let  <math>\widehat{z}(t;{{\hat{\mu }}^{\prime }},{{\hat{\sigma }}_{{{T}'}}})=\tfrac{t-{{\widehat{\mu }}^{\prime }}}{{{\widehat{\sigma }}_{{{T}'}}}},</math>  then  <math>\tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}.</math> For  <math>t={T}'</math> ,  <math>\widehat{z}=\tfrac{{T}'-{{\widehat{\mu }}^{\prime }}}{{{\widehat{\sigma }}_{{{T}'}}}}</math> , and for  <math>t=\infty ,</math>  <math>\widehat{z}=\infty .</math>  The above equation then becomes:
 
 
::<math>\hat{R}(\widehat{z})=\int_{\widehat{z}({T}')}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math>
 
 
The bounds on  <math>z</math>  are estimated from:
 
::<math>\begin{align}
  & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\
& {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})} 
\end{align}</math>
 
:where:
 
::<math>\begin{align}
  & Var(\widehat{z})= & \left( \frac{\partial z}{\partial {\mu }'} \right)_{{{\widehat{\mu }}^{\prime }}}^{2}Var({{\widehat{\mu }}^{\prime }})+\left( \frac{\partial z}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
&  & +2{{\left( \frac{\partial z}{\partial {\mu }'} \right)}_{{{\widehat{\mu }}^{\prime }}}}{{\left( \frac{\partial z}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right) 
\end{align}</math>
 
:or:
 
::<math>Var(\widehat{z})=\frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}\left[ Var({{\widehat{\mu }}^{\prime }})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}})+2\cdot \widehat{z}\cdot Cov\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right) \right]</math>
 
 
The upper and lower bounds on reliability are:
 
::<math>\begin{align}
  & {{R}_{U}}= & \int_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\
& {{R}_{L}}= & \int_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)} 
\end{align}</math>
 
====Bounds on Time====
 
The bounds around time for a given lognormal percentile, or unreliability, are estimated by first solving the reliability equation with respect to time, as follows:
 
 
::<math>{T}'({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}})={{\widehat{\mu }}^{\prime }}+z\cdot {{\widehat{\sigma }}_{{{T}'}}}</math>
 
:where:
 
::<math>z={{\Phi }^{-1}}\left[ F({T}') \right]</math>
 
:and:
 
::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math>
 
 
The next step is to calculate the variance of  <math>{T}'({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}}):</math>
 
::<math>\begin{align}
  & Var({{{\hat{T}}}^{\prime }})= & {{\left( \frac{\partial {T}'}{\partial {\mu }'} \right)}^{2}}Var({{\widehat{\mu }}^{\prime }})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
&  & +2\left( \frac{\partial {T}'}{\partial {\mu }'} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right) \\
&  &  \\
& Var({{{\hat{T}}}^{\prime }})= & Var({{\widehat{\mu }}^{\prime }})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}})+2\cdot \widehat{z}\cdot Cov\left( {{\widehat{\mu }}^{\prime }},{{\widehat{\sigma }}_{{{T}'}}} \right) 
\end{align}</math>
 
 
The upper and lower bounds are then found by:
 
::<math>\begin{align}
  & T_{U}^{\prime }= & \ln {{T}_{U}}={{{\hat{T}}}^{\prime }}+{{K}_{\alpha }}\sqrt{Var({{{\hat{T}}}^{\prime }})} \\
& T_{L}^{\prime }= & \ln {{T}_{L}}={{{\hat{T}}}^{\prime }}-{{K}_{\alpha }}\sqrt{Var({{{\hat{T}}}^{\prime }})} 
\end{align}</math>
 
 
Solving for  <math>{{T}_{U}}</math>  and  <math>{{T}_{L}}</math>  we get:
 
::<math>\begin{align}
  & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (upper bound),} \\
& {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (lower bound)}\text{.} 
\end{align}</math>
 
====Example 4====
Using the data of Example 2 and assuming a lognormal distribution, estimate the parameters using the MLE method.
=====Solution to Example 4=====
In this example we have only complete data. Thus, the partials reduce to:
 
::<math>\begin{align}
  & \frac{\partial \Lambda }{\partial {\mu }'}= & \frac{1}{\sigma _{{{T}'}}^{2}}\cdot \underset{i=1}{\overset{14}{\mathop \sum }}\,\ln ({{T}_{i}})-{\mu }'=0 \\
& \frac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}= & \underset{i=1}{\overset{14}{\mathop \sum }}\,\left( \frac{\ln ({{T}_{i}})-{\mu }'}{\sigma _{{{T}'}}^{3}}-\frac{1}{{{\sigma }_{{{T}'}}}} \right)=0 
\end{align}</math>
 
 
Substituting the values of  <math>{{T}_{i}}</math>  and solving the above system simultaneously, we get:
 
::<math>\begin{align}
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.849 \\
& {{{\hat{\mu }}}^{\prime }}= & 3.516 
\end{align}</math>
 
 
Using Eqns. (mean) and (sdv) we get:
 
::<math>\overline{T}=\hat{\mu }=48.25\text{ hours}</math>
 
 
:and:
 
::<math>{{\hat{\sigma }}_{{{T}'}}}=49.61\text{ hours}.</math>
 
The variance/covariance matrix is given by:
 
::<math>\left[ \begin{matrix}
  \widehat{Var}\left( {{{\hat{\mu }}}^{\prime }} \right)=0.0515 & {} & \widehat{Cov}\left( {{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma }}}_{{{T}'}}} \right)=0.0000  \\
  {} & {} & {}  \\
  \widehat{Cov}\left( {{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma }}}_{{{T}'}}} \right)=0.0000 & {} & \widehat{Var}\left( {{{\hat{\sigma }}}_{{{T}'}}} \right)=0.0258  \\
\end{matrix} \right]</math>
 
====Note About Bias====
See the discussion regarding bias with the normal distribution  in Chapter 8 for information regarding parameter bias in the lognormal distribution.

Latest revision as of 06:02, 13 August 2012