Template:Lognormal distribution probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(Redirected page to The Lognormal Distribution)
 
(8 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Lognormal Probability Density Function==
#REDIRECT [[The Lognormal Distribution]]
 
The lognormal distribution is a two-parameter distribution with parameters  <math>{\mu }'</math>  and  <math>{{\sigma }'}}</math> . The  <math>pdf</math>  for this distribution is given by:
 
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
where, <math>{T}'=\ln (T)</math>. , where the  <math>T</math>  values are the times-to-failure, and
 
:<math>\mu'=\text{mean of the natural logarithms}</math>
:<math>\text{of the times-to-failure,}</math>
 
:<math>\sigma_{T'}=\text{standard deviation of the natural logarithms}</math>
 
:<math>\text{of the times-to-failure}</math>
 
The lognormal  <math>pdf</math>  can be obtained, realizing that for equal probabilities under the normal and lognormal  <math>pdf</math> s, incremental areas should also be equal, or:
 
::<math>f(T)dT=f({T}')d{T}'</math>
 
Taking the derivative yields:
 
::<math>d{T}'=\frac{dT}{T}</math>
 
:Substitution yields:
 
::<math>\begin{align}
  f(T)= & \frac{f({T}')}{T}, \\
  f(T)= & \frac{1}{T\cdot {{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(T)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} 
\end{align}</math>
 
:where:
 
::<math>f(T)\ge 0,T>0,-\infty <{\mu }'<\infty ,{{\sigma }_{{{T}'}}}>0</math>

Latest revision as of 04:41, 13 August 2012