Template:Example: Normal Distribution RRY: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Normal Distribution RRY Example''' Fourteen units were reliability tested and the following life test data were obtained: {|align="center" border=1 cellspacing=1 |- |colsp…')
 
(Redirected page to The Normal Distribution)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Normal Distribution RRY Example'''
#REDIRECT [[The Normal Distribution]]
 
Fourteen units were reliability tested and the following life test data were obtained:
 
 
{|align="center" border=1 cellspacing=1
|-
|colspan="2" style="text-align:center"|Table 8.1 -The test data for Example 2
|-
!Data point index
!Time-to-failure
|-
|1 ||5
|-
|2 ||10
|-
|3 ||15
|-
|4 ||20
|-
|5 ||25
|-
|6 ||30
|-
|7||35
|-
|8||40
|-
|9||50
|-
|10||60
|-
|11||70
|-
|12||80
|-
|13||90
|-
|14||100
|}
 
 
Assuming the data follow a normal distribution, estimate the parameters and determine the correlation coefficient,  <math>\rho </math> , using rank regression on Y.
 
====Solution to Example 2====
Construct a table like the one shown next.
 
<center><math>\overset{{}}{\mathop{\text{Table 8}\text{.2 - Least Squares Analysis}}}\,</math></center>
<center><math>\begin{matrix}
  \text{N} & \text{T}_{i} & \text{F(T}_{i}\text{)} & \text{y}_{i} & \text{T}_{i}^{2} & \text{y}_{i}^{2} & \text{T}_{i}\text{ y}_{i}  \\
  \text{1} & \text{5} & \text{0}\text{.0483} & \text{-1}\text{.6619} & \text{25} & \text{2}\text{.7619} & \text{-8}\text{.3095}  \\
  \text{2} & \text{10} & \text{0}\text{.1170} & \text{-1}\text{.1901} & \text{100} & \text{1}\text{.4163} & \text{-11}\text{.9010}  \\
  \text{3} & \text{15} & \text{0}\text{.1865} & \text{-0}\text{.8908} & \text{225} & \text{0}\text{.7935} & \text{-13}\text{.3620}  \\
  \text{4} & \text{20} & \text{0}\text{.2561} & \text{-0}\text{.6552} & \text{400} & \text{0}\text{.4292} & \text{-13}\text{.1030}  \\
  \text{5} & \text{25} & \text{0}\text{.3258} & \text{-0}\text{.4512} & \text{625} & \text{0}\text{.2036} & \text{-11}\text{.2800}  \\
  \text{6} & \text{30} & \text{0}\text{.3954} & \text{-0}\text{.2647} & \text{900} & \text{0}\text{.0701} & \text{-7}\text{.9422}  \\
  \text{7} & \text{35} & \text{0}\text{.4651} & \text{-0}\text{.0873} & \text{1225} & \text{0}\text{.0076} & \text{-3}\text{.0542}  \\
  \text{8} & \text{40} & \text{0}\text{.5349} & \text{0}\text{.0873} & \text{1600} & \text{0}\text{.0076} & \text{3}\text{.4905}  \\
  \text{9} & \text{50} & \text{0}\text{.6046} & \text{0}\text{.2647} & \text{2500} & \text{0}\text{.0701} & \text{13}\text{.2370}  \\
  \text{10} & \text{60} & \text{0}\text{.6742} & \text{0}\text{.4512} & \text{3600} & \text{0}\text{.2036} & \text{27}\text{.0720}  \\
  \text{11} & \text{70} & \text{0}\text{.7439} & \text{0}\text{.6552} & \text{4900} & \text{0}\text{.4292} & \text{45}\text{.8605}  \\
  \text{12} & \text{80} & \text{0}\text{.8135} & \text{0}\text{.8908} & \text{6400} & \text{0}\text{.7935} & \text{71}\text{.2640}  \\
  \text{13} & \text{90} & \text{0}\text{.8830} & \text{1}\text{.1901} & \text{8100} & \text{1}\text{.4163} & \text{107}\text{.1090}  \\
  \text{14} & \text{100} & \text{0}\text{.9517} & \text{1}\text{.6619} & \text{10000} & \text{2}\text{.7619} & \text{166}\text{.1900}  \\
  \mathop{}_{}^{} & \text{630} & {} & \text{0} & \text{40600} & \text{11}\text{.3646} & \text{365}\text{.2711}  \\
\end{matrix}</math></center>
 
 
:• The median rank values ( <math>F({{T}_{i}})</math> ) can be found in rank tables, available in many statistical texts, or they can be estimated by using the Quick Statistical Reference in Weibull++.
:• The  <math>{{y}_{i}}</math>  values were obtained from standardized normal distribution's area tables by entering for  <math>F(z)</math>  and getting the corresponding  <math>z</math>  value ( <math>{{y}_{i}}</math> ).  As with the median rank values, these standard normal values can be obtained with the Quick Statistical Reference.
Given the values in Table 8.2, calculate  <math>\widehat{a}</math>  and  <math>\widehat{b}</math>  using Eqns. (aan) and (bbn):
 
::<math>\begin{align}
  & \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}}{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})}^{2}}/14} \\
&  &  \\
& \widehat{b}= & \frac{365.2711-(630)(0)/14}{40,600-{{(630)}^{2}}/14}=0.02982 
\end{align}</math>
 
:and:
 
::<math>\widehat{a}=\overline{y}-\widehat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{T}_{i}}}{N}</math>
 
:or:
 
::<math>\widehat{a}=\frac{0}{14}-(0.02982)\frac{630}{14}=-1.3419</math>
 
Therefore, from Eqn. (bn):
 
::<math>\widehat{\sigma}=\frac{1}{\hat{b}}=\frac{1}{0.02982}=33.5367</math>
 
:and from Eqn. (an):
 
::<math>\widehat{\mu }=-\widehat{a}\cdot \widehat{\sigma }=-(-1.3419)\cdot 33.5367\simeq 45</math>
 
or  <math>\widehat{\mu }=45</math>  hours <math>.</math>
 
The correlation coefficient can be estimated using Eqn. (RHOn):
 
::<math>\widehat{\rho }=0.979</math>
 
The preceding example can be repeated using Weibull++ .
 
:• Create a new folio for Times-to-Failure data, and enter the data given in Table 8.1.
:• Choose Normal from the Distributions list.
:• Go to the Analysis page and select Rank Regression on Y (RRY).
:• Click the Calculate icon located on the Main page.
 
[[Image:weibullfolio1.png|thumb|center|400px| ]]
 
The probability plot is shown next.
 
[[Image:weibullfolioplot1st.png|thumb|center|400px| ]]

Latest revision as of 01:55, 13 August 2012