Template:Weibull mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '=== The Mean or MTTF === The mean, <math> \overline{T} \,\!</math>, (also called ''MTTF'' of the Weibull ''pdf'' is given by: ::<math> \overline{T}=\gamma +\eta \cdot \Gamma \…')
 
(Redirected page to Weibull Distribution Functions)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=== The Mean or MTTF ===
#REDIRECT [[Weibull Distribution Functions]]
 
The mean, <math> \overline{T} \,\!</math>, (also called ''MTTF'' of the Weibull ''pdf'' is given by:
 
::<math> \overline{T}=\gamma +\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right)  \,\!</math>
 
:where
::<math> \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>
 
is the gamma function evaluated at the value of
 
::<math> \left( { \frac{1}{\beta }}+1\right) \,\!</math>.
 
The gamma function is defined as:
 
::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math>
 
For the two-parameter case, this can be reduced to:
 
::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>
 
Note that some practitioners erroneously assume that <math> \eta \,\!</math> is equal to the  MTTF, <math> \overline{T}\,\!</math>.
This is only true for the case of
<math> \beta=1 \,\!</math> or
 
::<math>
\begin{align}
\overline{T} &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\
&= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\
&= \eta \cdot \Gamma \left( {2}\right) \\
&= \eta \cdot 1\\
&=  \eta
\end{align}
</math>

Latest revision as of 01:39, 13 August 2012