|   |     | 
| (5 intermediate revisions by 2 users not shown) | 
| Line 1: | Line 1: | 
|  | ===The Weibull Distribution===
 |  | #REDIRECT [[The Weibull Distribution]] | 
|  | The Weibull distribution is a general purpose reliability distribution used to model material strength, times-to-failure of electronic and mechanical components, equipment or systems. In its most general case, the three-parameter Weibull <math>pdf</math> is defined by:
 |  | 
|  | <br>
 |  | 
|  | ::<math>f(t)=\frac{\beta}{\eta } \left( \frac{t-\gamma }{\eta } \right)^{\beta -1}{e}^{-(\tfrac{t-\gamma }{\eta }) ^{\beta}}</math>
 |  | 
|  | <br>
 |  | 
|  |   |  | 
|  | with three parameters  <math>\beta </math> ,  <math>\eta </math>  and  <math>\gamma ,</math>  where  <math>\beta =</math>  shape parameter,  <math>\eta =</math>  scale parameter and location parameter.
 |  | 
|  | <br>
 |  | 
|  | If the location parameter,  <math>\gamma </math> , is assumed to be zero, the distribution then becomes the two-parameter Weibull or: 
 |  | 
|  |   |  | 
|  | ::<math>f(t)=\frac{\beta}{\eta }( \frac{t }{\eta } )^{\beta -1}{e}^{-(\tfrac{t }{\eta }) ^{\beta}}</math>
 |  | 
|  |   |  | 
|  | One additional form is the one-parameter Weibull distribution, which assumes that the location parameter, <math>\gamma ,</math> is zero, and the shape parameter is a known constant, or <math>\beta =</math> constant <math>=C</math>, so:
 |  | 
|  |   |  | 
|  | ::<math>f(t)=\frac{C}{\eta}(\frac{t}{\eta})^{C-1}e^{-(\frac{t}{\eta})^C}
 |  | 
|  | </math>
 |  | 
|  |   |  | 
|  | Chapter [[The Weibull Distribution]]of this reference fully details the Weibull distribution and presents many examples of its use in Weibull++.
 |  | 
|  |   |  | 
|  | <br>
 |  | 
|  | {{weibull-bayesian distribution}}
 |  |