|
|
(4 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| '''Maximum Likelihood Estimation Example'''
| | #REDIRECT [[The Weibull Distribution]] |
| | |
| Repeat [[Weibull Example 1 Data|Example 1]] using maximum likelihood estimation.
| |
| | |
| | |
| '''Solution'''
| |
| | |
| In this case, we have non-grouped data with no suspensions or intervals, i.e., complete data. The equations for the partial derivatives of the log-likelihood function are derived in [[Appendix:_Log-Likelihood_Equations|an appendix]] and given next:
| |
| ::<math> \frac{\partial \Lambda }{\partial \beta }=\frac{6}{\beta } +\sum_{i=1}^{6}\ln \left( \frac{T_{i}}{\eta }\right) -\sum_{i=1}^{6}\left( \frac{T_{i}}{\eta }\right) ^{\beta }\ln \left( \frac{T_{i}}{\eta }\right) =0
| |
| </math>
| |
| | |
| :and:
| |
| | |
| ::<math> \frac{\partial \Lambda }{\partial \eta }=\frac{-\beta }{\eta }\cdot 6+\frac{ \beta }{\eta }\sum\limits_{i=1}^{6}\left( \frac{T_{i}}{\eta }\right) ^{\beta }=0 </math>
| |
| | |
| Solving the above equations simultaneously we get:
| |
| | |
| ::<math> \hat{\beta }=1.933,</math> <math>\hat{\eta }=73.526 </math>
| |
| | |
| <br>
| |
| The variance/covariance matrix is found to be,
| |
| | |
| ::<math> \left[ \begin{array}{ccc} \hat{Var}\left( \hat{\beta }\right) =0.4211 & \hat{Cov}( \hat{\beta },\hat{\eta })=3.272 \\
| |
| | |
| \hat{Cov}(\hat{\beta },\hat{\eta })=3.272 & \hat{Var} \left( \hat{\eta }\right) =266.646 \end{array} \right] </math>
| |
| | |
| The results and the associated graph using Weibull++ (MLE) are shown next. | |
| | |
| [[Image:Weibull Distribution Example 5 Plot.png|thumb|center|250px| ]]
| |
| | |
| You can view the variance/covariance matrix directly by clicking the ''Analysis Summary'' at the '''Main''' Panel.
| |
| | |
| [[Image: Weibull Distribution Example 5 Variance Matrix.png|thumb|center|250px| ]]
| |
| | |
| <br> Note that the decimal accuracy displayed and used is based on your individual User Setup.
| |