Expected Failure Time Plot: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 72: Line 72:
{| border="1" cellspacing="1" cellpadding="1" width="400" align="center"
{| border="1" cellspacing="1" cellpadding="1" width="400" align="center"
|-
|-
! scope="col" |  
! bgcolor="#cccccc" scope="col" | Failure Order Number
! scope="col" |  
! bgcolor="#cccccc" scope="col" | Lowest Expected Time-to-failure (hr)
! scope="col" |  
! bgcolor="#cccccc" scope="col" | Median Expected Time-to-failure (hr)
! scope="col" |  
! bgcolor="#cccccc" scope="col" | Highest Expected Time-to-failure (hr)
|-
|-
|  
| valign="middle" align="center" | 1
|  
| valign="middle" align="center" | 9.25
|  
| valign="middle" align="center" | 33.99
|  
| valign="middle" align="center" | 70.66
|-
|-
|  
| valign="middle" align="center" | 2
|  
| valign="middle" align="center" | 25.48
|  
| valign="middle" align="center" | 55.42
|  
| valign="middle" align="center" | 93.37
|-
|-
|  
| valign="middle" align="center" | 3
|  
| valign="middle" align="center" | 40.77
|  
| valign="middle" align="center" | 73.97
|  
| valign="middle" align="center" | 114.21
|-
|-
|  
| valign="middle" align="center" | 4
|  
| valign="middle" align="center" | 56.26
|  
| valign="middle" align="center" | 92.96
|  
| valign="middle" align="center" | 136.98
|-
|-
|  
| valign="middle" align="center" | 5
|  
| valign="middle" align="center" | 73.60
|  
| valign="middle" align="center" | 115.33
|  
| valign="middle" align="center" | 166.34
|-
|-
|  
| valign="middle" align="center" | 6
|  
| valign="middle" align="center" |
|  
96.64
|  
 
| valign="middle" align="center" | 148.84
| valign="middle" align="center" | 218.32
|}
|}


Line 112: Line 114:
<br>
<br>


9.25<br>25.48<br>40.77<br>56.26<br>73.60<br>96.64<br>
<br>






33.99<br>55.42<br>73.97<br>92.96<br>115.33<br>148.84<br>
<br><br>
 
70.66<br>93.37<br>114.21<br>136.98<br>166.34<br>218.32<br><br><br>


[[Category:Weibull++]] [[Category:Test_Design]] [[Category:Special_Tools]]
[[Category:Weibull++]] [[Category:Test_Design]] [[Category:Special_Tools]]

Revision as of 17:49, 14 February 2011

When a reliability life test is planned it is useful to visualize the expected outcome of the experiment. The Expected Failure Time Plot (introduced by ReliaSoft in Weibull++ 8)provides such visual.

Background & Calculations

Using the cumulative binomial, for a defined sample size, one can compute a rank (Median Rank if at 50% probability) for each ordered failure.

As an example and for a sample size of 6 the 5%, 50% and 95% ranks would be as follows:


Table 1: 5%, 50% and 95% Ranks for a sample size of 6. 
Order Number 5% 50% 95%
1 0.85% 10.91% 39.30%
2 6.29% 26.45% 58.18%
3 15.32% 42.14% 72.87%
4 27.13% 57.86% 84.68%
5 41.82% 73.55% 93.71%
6 60.70%

89.09%

99.15%


Furthermore, consider that for the units to be tested the underlying reliability model assumption is given by a Weibull distribution with β = 2, and η = 100 hr.

Then the median time to failure of the first unit on test can be determined by solving the Weibull reliability equation for t, at each probability,

or

[math]\displaystyle{ R(t)=e^{\big({t \over \eta}\big)^\beta} }[/math]

then for 0.85%,


[math]\displaystyle{ 1-0.0085=e^{\big({t \over 100}\big)^2} }[/math]

and so forths as shown in the table below:


Failure Order Number Lowest Expected Time-to-failure (hr) Median Expected Time-to-failure (hr) Highest Expected Time-to-failure (hr)
1 9.25 33.99 70.66
2 25.48 55.42 93.37
3 40.77 73.97 114.21
4 56.26 92.96 136.98
5 73.60 115.33 166.34
6

96.64

148.84 218.32