Non Parametric RDA MCF Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(merged content with page: Recurrent_Event_Data_Analysis)
Line 1: Line 1:
'''Non-Parametric Recurrent Event Data Analysis MCF Example'''
[[Category: For Deletion]]
 
A health care company maintains five identical pieces of equipment used by a hospital. When a piece of equipment fails, the company sends a crew to repair it. The following table gives the failure and censoring ages for each machine, where the + sign indicates a censoring age.
 
<br>
<center><math>\begin{matrix}
  Equipment ID & Months  \\
  \text{1} & \text{5, 10 , 15, 17+}  \\
  \text{2} & \text{6, 13, 17, 19+}  \\
  \text{3} & \text{12, 20, 25, 26+}  \\
  \text{4} & \text{13, 15, 24+}  \\
  \text{5} & \text{16, 22, 25, 28+}  \\
\end{matrix}</math></center>
Estimate the MCF values.
 
<br>'''Solution'''
 
The MCF estimates are&nbsp;obtained as follows:  
<center><math>\begin{matrix}
  ID & Months ({{t}_{i}}) & State & {{r}_{i}} & 1/{{r}_{i}} & {{M}^{*}}({{t}_{i}})  \\
  \text{1} & \text{5} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20}  \\
  \text{2} & \text{6} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20 + 0}\text{.20 = 0}\text{.40}  \\
  \text{1} & \text{10} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.40 + 0}\text{.20 = 0}\text{.60}  \\
  \text{3} & \text{12} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.60 + 0}\text{.20 = 0}\text{.80}  \\
  \text{2} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.80+0}\text{.20 =1}\text{.00}  \\
  \text{4} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.00 + 0}\text{.20 = 1}\text{.20}  \\
  \text{1} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.20 + 0}\text{.20 =1}\text{.40}  \\
  \text{4} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.40 + 0}\text{.20 = 1}\text{.60}  \\
  \text{5} & \text{16} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.60 + 0}\text{.20 = 1}\text{.80}  \\
  \text{2} & \text{17} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.80 + 0}\text{.20 = 2}\text{.0}  \\
  \text{1} & \text{17} & \text{S} & \text{4} & {} & {}  \\
  \text{2} & \text{19} & \text{S} & \text{3} & {} & {}  \\
  \text{3} & \text{20} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.00 + 0}\text{.33 = 2}\text{.33}  \\
  \text{5} & \text{22} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.33 + 0}\text{.33 = 2}\text{.66}  \\
  \text{4} & \text{24} & \text{S} & \text{2} & {} & {}  \\
  \text{3} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{2}\text{.66 + 0}\text{.50 = 3}\text{.16}  \\
  \text{5} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{3}\text{.16 + 0}\text{.50 = 3}\text{.66}  \\
  \text{3} & \text{26} & \text{S} & \text{1} & {} & {}  \\
  \text{5} & \text{28} & \text{S} & \text{0} & {} & {}  \\
\end{matrix}</math></center>

Revision as of 04:35, 1 August 2012