Template:Weibull mean: Difference between revisions
Jump to navigation
Jump to search
Chris Kahn (talk | contribs) |
|||
Line 16: | Line 16: | ||
::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math> | ::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math> | ||
For the | For the 2-parameter case, this can be reduced to: | ||
::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math> | ::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math> |
Revision as of 22:52, 24 April 2012
The Mean or MTTF
The mean, [math]\displaystyle{ \overline{T} \,\! }[/math], (also called MTTF of the Weibull pdf is given by:
- [math]\displaystyle{ \overline{T}=\gamma +\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]
where
- [math]\displaystyle{ \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]
is the gamma function evaluated at the value of
- [math]\displaystyle{ \left( { \frac{1}{\beta }}+1\right) \,\! }[/math].
The gamma function is defined as:
- [math]\displaystyle{ \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\! }[/math]
For the 2-parameter case, this can be reduced to:
- [math]\displaystyle{ \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]
Note that some practitioners erroneously assume that [math]\displaystyle{ \eta \,\! }[/math] is equal to the MTTF, [math]\displaystyle{ \overline{T}\,\! }[/math]. This is only true for the case of [math]\displaystyle{ \beta=1 \,\! }[/math] or
- [math]\displaystyle{ \begin{align} \overline{T} &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\ &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\ &= \eta \cdot \Gamma \left( {2}\right) \\ &= \eta \cdot 1\\ &= \eta \end{align} }[/math]