Template:Three-parameter weibull distribution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
(Undo revision 23382 by Lisa Hacker (Talk))
Line 3: Line 3:
::<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} </math>  
::<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} </math>  


where:  
where:


::<math> f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, </math>
::<math> f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, </math>
Line 11: Line 11:
::<math> \eta > 0 \,\!</math>
::<math> \eta > 0 \,\!</math>


::<math> -\infty < \gamma < +\infty \\!</math>
::<math> -\infty < \gamma < +\infty </math>


and:  
and:  

Revision as of 21:09, 30 March 2012

The three-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} }[/math]

where:

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, }[/math]
[math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
[math]\displaystyle{ \eta \gt 0 \,\! }[/math]
[math]\displaystyle{ -\infty \lt \gamma \lt +\infty }[/math]

and:

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)