ALTA ALTA Standard Folio Data PPH-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
|-
|-
| valign="middle" |{{Font|Standard Folio Data PPH-Weibull|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data PPH-Weibull|11|tahoma|bold|gray}}
|-
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| valign="middle" |
| valign="middle" |
Line 28: Line 26:
| valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
| valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
|}
|}
<br>
{{Font|Learn more from...|11|tahoma|bold|gray}}
{| border="0" align="left" cellpadding="0" cellspacing="3"
|-
| [[Image:Helpblue.png]]
| [Link1 the help files...]
|-
| [[Image:Book blue.png]]
| [http://reliawiki.com/index.php/Template:PH_Model the theory textbook...] 
|-
| [[Image:Articleblue.png]]
| [Link3 related article(s)...]
|-
| [[Image:Bulbblue.png]]
| [http://www.reliawiki.com/index.php/Temporary_needs_example_page use example(s)...]
|}
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>  
<br>  



Revision as of 22:35, 7 March 2012

Webnotes-alta.png
Standard Folio Data PPH-Weibull

Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for [math]\displaystyle{ \beta }[/math] = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:
[math]\displaystyle{ {{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}} }[/math]
where:
[math]\displaystyle{ {{a}_{i,PH}} }[/math] are the parameters of the PH model.

[math]\displaystyle{ {{a}_{i,GLL}} }[/math] are the parameters of the general log-linear model.

In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for [math]\displaystyle{ \beta }[/math] = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and [math]\displaystyle{ {{a}_{i,PH}}=-{{a}_{i,GLL}}. }[/math]

PH Model


Learn more from...

Helpblue.png [Link1 the help files...]
Book blue.png the theory textbook...
Articleblue.png [Link3 related article(s)...]
Bulbblue.png use example(s)...























Docedit.png