Template:Ald mle: Difference between revisions
Jump to navigation
Jump to search
Chris Kahn (talk | contribs) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
====MLE Parameter Estimation==== | ====MLE Parameter Estimation==== | ||
The parameters of the lognormal distribution can also be estimated using | The parameters of the lognormal distribution can also be estimated using maximum likelihood estimation (MLE). This general log-likelihood function is: | ||
<br> | <br> | ||
Line 8: | Line 8: | ||
<br> | <br> | ||
where: | |||
<br> | <br> | ||
::<math>z_{Li}^{\prime \prime }=\frac{\ln T_{Li}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }}</math> | ::<math>z_{Li}^{\prime \prime }=\frac{\ln T_{Li}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }}</math> | ||
Line 14: | Line 15: | ||
::<math>z_{Ri}^{\prime \prime }=\frac{\ln T_{Ri}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }}</math> | ::<math>z_{Ri}^{\prime \prime }=\frac{\ln T_{Ri}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }}</math> | ||
<br> | <br> | ||
and: | |||
<br> | <br> | ||
<br> | <br> | ||
: | :* <math>{{F}_{e}}</math> is the number of groups of times-to-failure data points. | ||
: | :* <math>{{N}_{i}}</math> is the number of failure times in the <math>{{i}^{th}}</math> time-to-failure data group. | ||
: | :* <math>{\mu }'</math> is the mean of the natural logarithms of the failure times (unknown a priori, the first of two parameters to be found). | ||
: | :* <math>{{\sigma }_{{{T}'}}}</math> is the standard deviation of the natural logarithms of the failure times (unknown a priori, the second of two parameters to be found). | ||
: | :* <math>{{T}_{i}}</math> is the time of the <math>{{i}^{th}}</math> group of time-to-failure data. | ||
: | :* <math>S</math> is the number of groups of suspension data points. | ||
: | :* <math>N_{i}^{\prime }</math> is the number of suspensions in <math>{{i}^{th}}</math> group of suspension data points. | ||
: | :* <math>T_{i}^{\prime }</math> is the time of the <math>{{i}^{th}}</math> suspension data group. | ||
: | :* <math>FI</math> is the number of interval data groups. | ||
: | :* <math>N_{i}^{\prime \prime }</math> is the number of intervals in the <math>i^{th}</math> group of data intervals. | ||
: | :* <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>i^{th}</math> interval. | ||
: | :* <math>T_{Ri}^{\prime \prime }</math> is the ending of the <math>i^{th}</math> interval. | ||
The solution will be found by solving for a pair of parameters <math>\left( {\mu }',{{\sigma }_{{{T}'}}} \right)</math> so that <math>\tfrac{\partial \Lambda }{\partial {\mu }'}=0</math> and <math>\tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0 | |||
<br> | |||
The solution will be found by solving for a pair of parameters <math>\left( {\mu }',{{\sigma }_{{{T}'}}} \right)</math> so that <math>\tfrac{\partial \Lambda }{\partial {\mu }'}=0</math> and <math>\tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0</math>, where: | |||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 37: | Line 40: | ||
\end{align}</math> | \end{align}</math> | ||
<br> | <br> | ||
and: | |||
<br> | <br> | ||
<br> | <br> |
Latest revision as of 17:02, 7 March 2012
MLE Parameter Estimation
The parameters of the lognormal distribution can also be estimated using maximum likelihood estimation (MLE). This general log-likelihood function is:
- [math]\displaystyle{ \begin{align} & \ln (L)= \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{{{\sigma }_{{{T}'}}}{{T}_{i}}}\phi \left( \frac{\ln \left( {{T}_{i}} \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right]\text{ }+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ln \left[ 1-\Phi \left( \frac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right]+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })] \end{align} }[/math]
where:
- [math]\displaystyle{ z_{Li}^{\prime \prime }=\frac{\ln T_{Li}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }} }[/math]
- [math]\displaystyle{ z_{Ri}^{\prime \prime }=\frac{\ln T_{Ri}^{\prime \prime }-{\mu }'}{\sigma _{T}^{\prime }} }[/math]
and:
- [math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of times-to-failure data points.
- [math]\displaystyle{ {{N}_{i}} }[/math] is the number of failure times in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
- [math]\displaystyle{ {\mu }' }[/math] is the mean of the natural logarithms of the failure times (unknown a priori, the first of two parameters to be found).
- [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] is the standard deviation of the natural logarithms of the failure times (unknown a priori, the second of two parameters to be found).
- [math]\displaystyle{ {{T}_{i}} }[/math] is the time of the [math]\displaystyle{ {{i}^{th}} }[/math] group of time-to-failure data.
- [math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
- [math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
- [math]\displaystyle{ T_{i}^{\prime } }[/math] is the time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
- [math]\displaystyle{ FI }[/math] is the number of interval data groups.
- [math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the [math]\displaystyle{ i^{th} }[/math] group of data intervals.
- [math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the [math]\displaystyle{ i^{th} }[/math] interval.
- [math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the [math]\displaystyle{ i^{th} }[/math] interval.
The solution will be found by solving for a pair of parameters [math]\displaystyle{ \left( {\mu }',{{\sigma }_{{{T}'}}} \right) }[/math] so that [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial {\mu }'}=0 }[/math] and [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0 }[/math], where:
- [math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial {\mu }'}= \frac{1}{\sigma _{{{T}'}}^{2}}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}(\ln ({{T}_{i}})-{\mu }')+\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}\overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\varphi (z_{Ri}^{\prime \prime })-\varphi (z_{Li}^{\prime \prime })}{\sigma _{T}^{\prime }(\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime }))} \\ & & \\ & \frac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}= \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{{{\left( \ln ({{T}_{i}})-{\mu }' \right)}^{2}}}{\sigma _{{{T}'}}^{3}}-\frac{1}{{{\sigma }_{{{T}'}}}} \right)+\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}\overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{z_{Ri}^{\prime \prime }\varphi (z_{Ri}^{\prime \prime })-z_{Li}^{\prime \prime }\varphi (z_{Li}^{\prime \prime })}{\sigma _{T}^{\prime }(\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime }))} \end{align} }[/math]
and:
- [math]\displaystyle{ \phi \left( x \right)=\frac{1}{\sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( x \right)}^{2}}}} }[/math]
- [math]\displaystyle{ \Phi (x)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{x}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dx }[/math]