Template:Alta exponential reliability function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
====The Reliability Function====
==== The Reliability Function ====
The 1-parameter exponential reliability function is given by:
 
The 1-parameter exponential reliability function is given by:  
 
<br>


<br>
::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math>
::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math>


<br>
<br> This function is the complement of the exponential cumulative distribution function, or:  
This function is the complement of the exponential cumulative distribution function or:  
 
<br>


<br>
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math>
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math>


<br>
<br> and:  
and:  
 
<br>


<br>
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>


<br>
<br>

Revision as of 22:32, 6 March 2012

The Reliability Function

The 1-parameter exponential reliability function is given by:


[math]\displaystyle{ R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}} }[/math]


This function is the complement of the exponential cumulative distribution function, or:


[math]\displaystyle{ R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT }[/math]


and:


[math]\displaystyle{ R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}} }[/math]